ENVIRONMENTAL BENEFITS FROM A SUSTAINABLE BUS RAPID TRANSIT SYSTEM IN COLOMBIA Jorge E. Pachon, Sebastián Montealegre, Johan Vanegas, Beatriz Ortiz, Alejandro Parra Universidad de la Salle, Centro Lasallista de Investigación y Modelación Ambiental CLIMA, Bogotá, Colombia. Email: clima@lasalle.edu.co

UNIVERSIDAD DE

Introduction

- * Transportation is the largest source of emissions to the atmosphere in Colombia, both greenhouse gases (GHG) and criteria pollutants.
- * Bogota, Colombia's capital, implemented a Bus Rapid Transit system (Transmilenio) in 2000, and since then the fleet has been growing and expanding throughout the city. Nowadays, 100% of Transmilenio buses operate with diesel (Euro II, IV, V)
- * In this work, we estimate emission reductions for 2030 from low or zero emissions buses and conduct air quality modeling to assess environmental benefits.
- * PM2.5 emission reductions larger than 95% can be achieved with electric, natural gas and Euro VI diesel buses. However, CO₂ emissions reductions are lower for diesel than natural gas or electric buses.
- *Along with environmental concerns, economic and logistic issues are considered when choosing bus technologies.

Materials and Methods

- * Emissions were calculated as the product of emission factors and vehicular activity. EFs were collected from different studies and international references.
- * A base case was defined for 2030 projecting vehicular growth but no change in bus bus tecnologies.
- * Six scenarios were proposed implementing zero or low carbon technologies.

Bus type	Technology	PM10 (g/km)	PM2.5 (g/km)	CO ₂ (g/km)	CO (g/km)	NO _x (g/km)	SO ₂ (g/km)
	Euro II	0.210	0.193	1,254	28.9	21.5	0.027
	Euro IV	0.094	0.087	1,609	15.3	15.0	0.027
Torens Milenio	Euro V	0.043	0.039	1,455	10.8	16.0	0.025
	Euro VI	0.002	0.002	1,455	10.7	3.20	0.025
	Euro IV	0.047	0.043	1,490	17.0	16.4	0.027
www.transmilenio.gov.co	Euro V	0.047	0.043	1,392	7.3	16.4	0.025
	Euro VI	0.002	0.002	1,392	7.3	3.2	0.025
er BIARTICULADO	Euro VI Natural gas	0.003	0.003	377.7	32.5	2.0	0

Figure 1. Compilation of emission factors used in the Bogota's BRT system

Results

Table 1. Emission scenario reduction in the Bogota's BRT

SCENADIOS	Emissions (tons/year) at 2030							
SCENARIOS	PM10	PM2.5	NOx	SO2	СО	CO2		
Base Case	6.53	6.01	1329	3.45	1218	194801		
	6.22	5.69	1329	3.43	1178	193694		
1 (100% DIESEL EURO V)	-4.8%	-5.2%	0.0%	-0.7%	-3.3%	-0.6%		
2 (100% DIESEL EURO VI)	0.27	0.25	267	3.43	1178	193694		
	-95.8%	-95.8%	-79.9%	-0.4%	-3.3%	-0.6%		
3 (80% DIESEL EURO VI, 15% GNV, 5% ELEC)	0.36	0.33	310	2.75	1608	162704		
	-94.5%	-94.5%	-76.7%	-20.4%	32.1%	-16.5%		
	0.28	0.25	188	1.73	2057	114130		
4 (30% DIESEL EURO VI, 40% GNV, 30% ELEC)	-95.8%	-95.8%	-85.8%	-50.0%	68.9%	-41.4%		
E(1000/CNN/)	0.41	0.38	165	0.00	4440	51659		
5 (100% GNV)	-93.7%	-93.7%	-87.6%	-100.0%	264.6%	-73.5%		
6 (100% ELEC)	0.00	0.00	0.00	0.00	0.00	0.00		
6 (100% ELEC)	-100%	-100%	-100%	-100%	-100%	-100%		

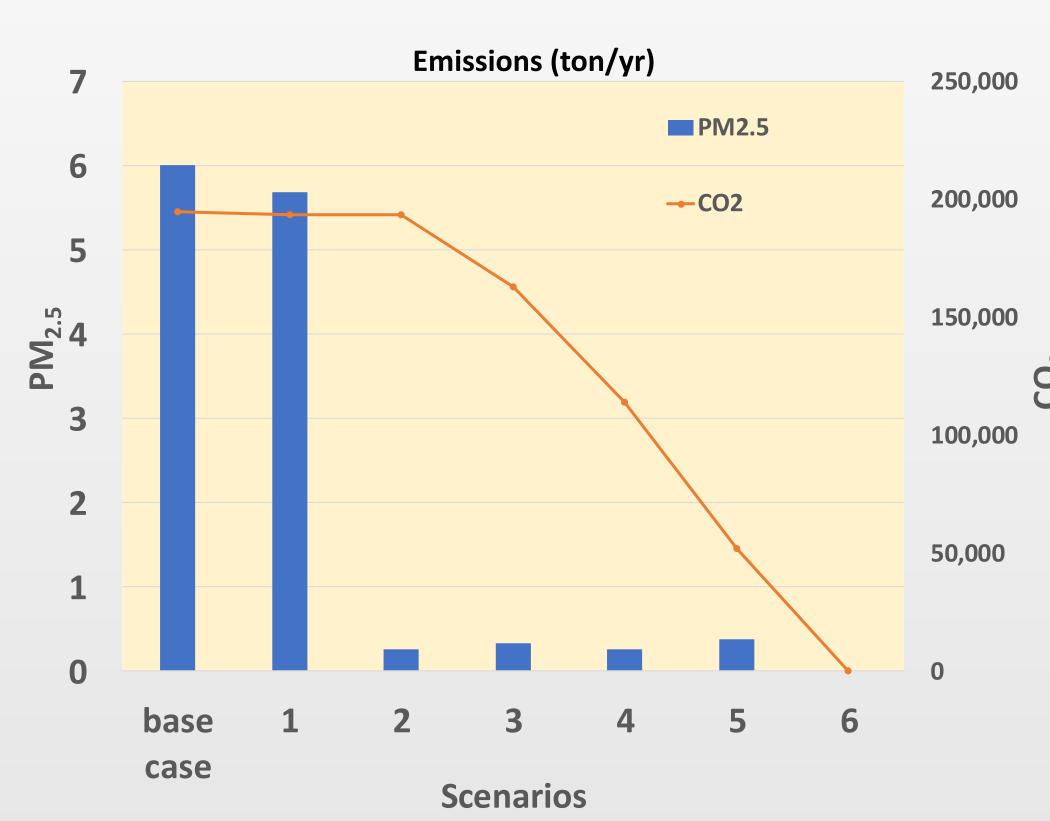
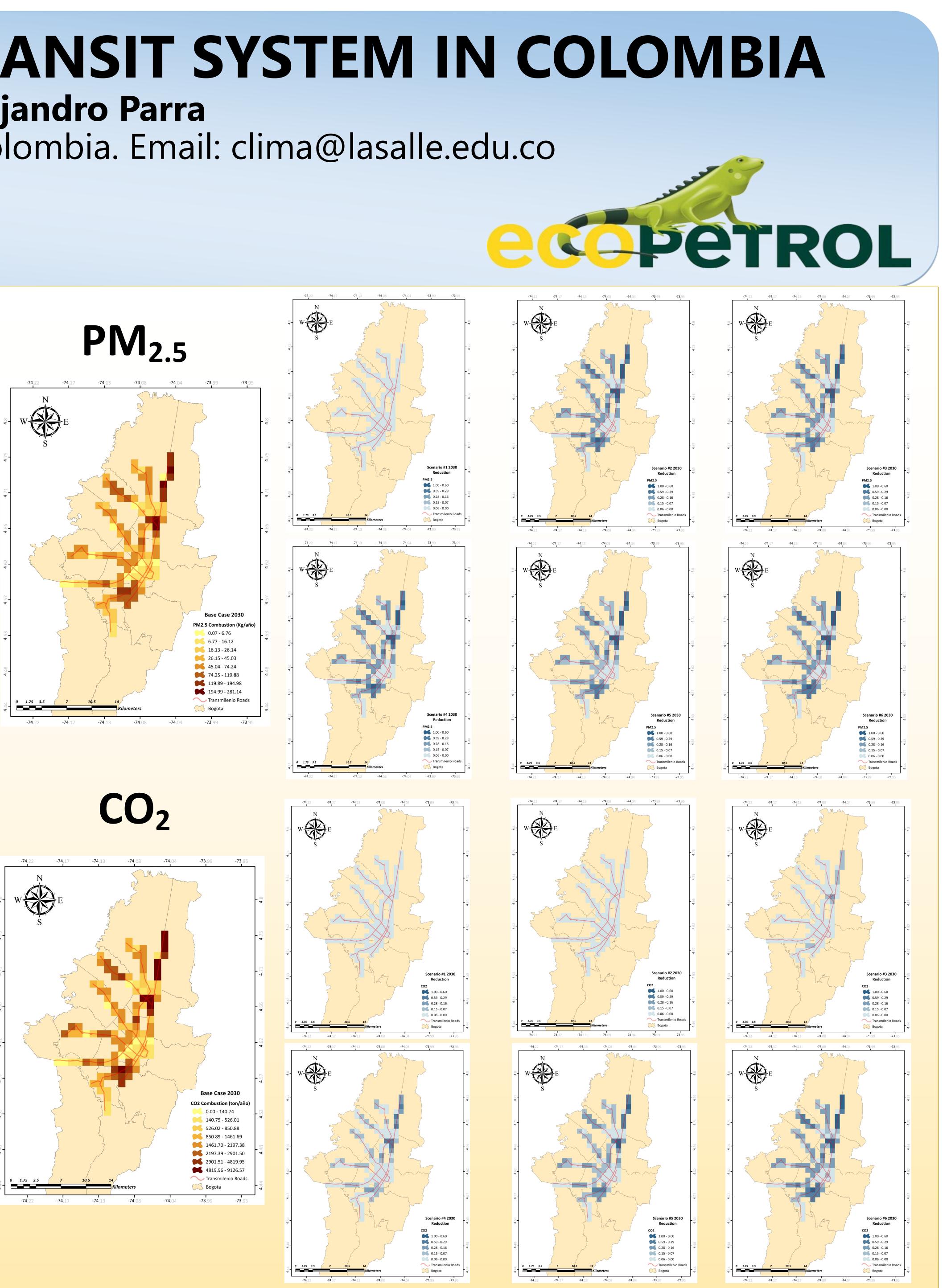
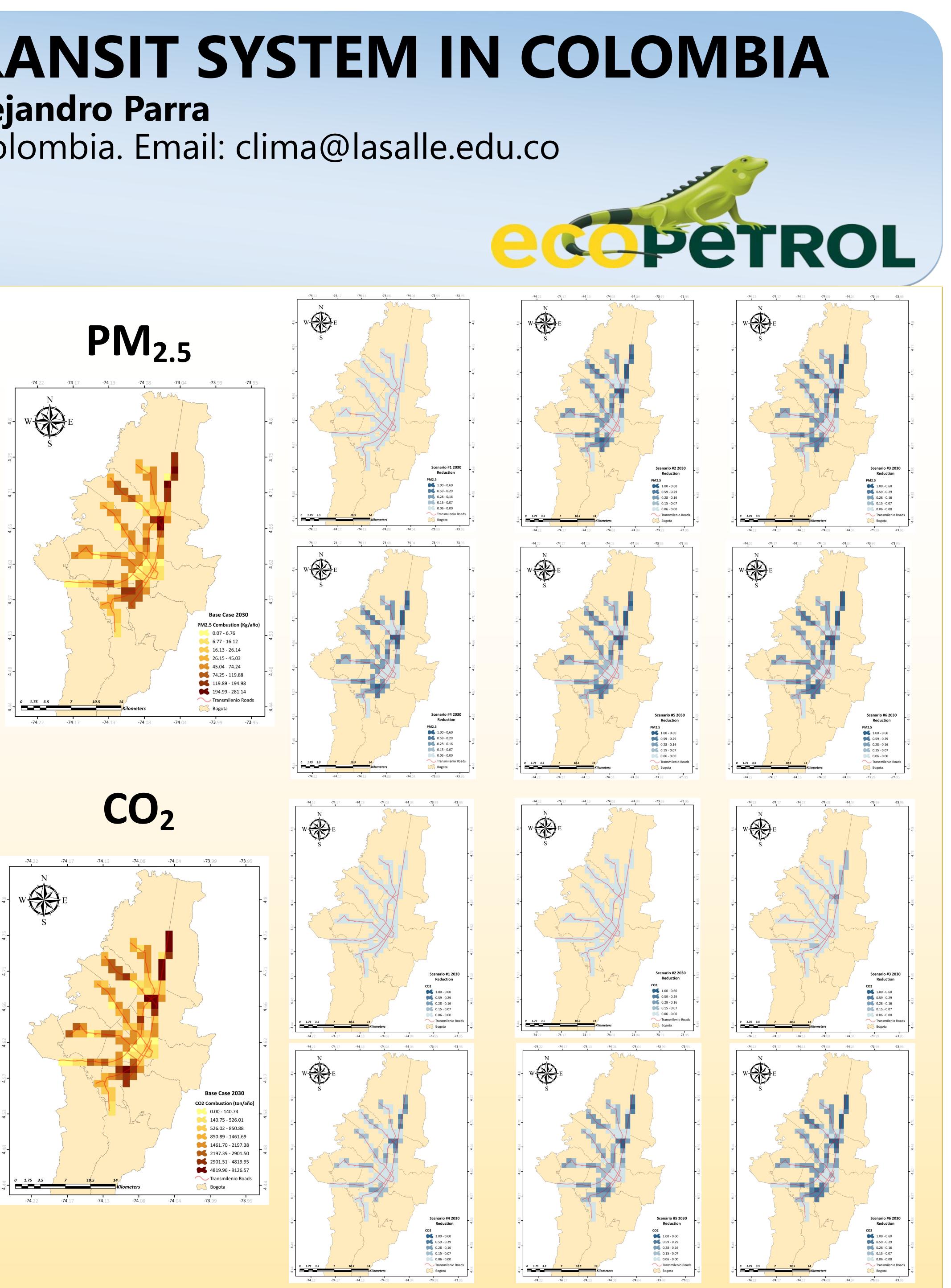



Figure 2. PM_{2.5} and CO₂ emissions by scenario


Table 2. Oportunities and challenges of emission reductions scenarios

Scenario	Opportunities	Challenges			
1&2	 Infraestructure in place for diesel storage and distribution Well-known bus maintenance and operation programs results in lower costs 	 Transition towards lower or zero carbon technologies Unpredictable fossil fuel prices Health externalities for the use of fossil fuels 			
3&4	 Introduction of low and zero carbon technologies Transition towards diesel elimination from public transportation 	 Development of infraestructura for natural gas storage and distribution Development of infraestructura for electric battery charging Health externalities for the use of fossil fuels 			
5	 Introduction of low carbon technologies Transition towards diesel elimination from public transportation 	 Development of infraestructura for natural gas storage and distribution Supply of natural gas in the future 			
6	 Introduction of zero carbon technologies Stability of electricity prices, mainly hydrogeneration 	 Development of infraestructura for electric battery charging 			

Main findings

- Having an electric fleet (scenario 6) represents 100% reduction in PM2.5 and CO_2 emissions.
- Scenarios 2 through 5 comprise PM2.5 reductions larger than 93% with respect to base case, but reductions in CO₂ emissios are smaller than scenario 6.
- A full fleet of Euro VI buses can (scenario 2) substantially reduce PM2.5 emissions (~96%), but does not reduce CO₂ with respect to base case.
- A full fleet of natural gas buses (scenario 5) achieves both PM2.5 and CO₂ emission reductions.
- A mix fleet of diesel, natural gas and electric vehicles represents a better opportunity to reduce both PM2.5 and CO₂ emissions.

*PM2.5 emission reductions larger than 95% can be achieved with electric, natural gas and Euro VI diesel buses. However, CO₂ emissions reductions are lower for diesel than natural gas or electric buses.

*Along with environmental concerns, economic and logistic issues are considered when choosing bus technologies.

This project was funded by the Colombian Petroleum Institute – ICP under agreement 5224377 with Universidad de La Salle. We thank local mobility (SDM) and environmental (SDA) agencies for information supply.

Figure 3. Emission reduction for PM2.5 and CO₂ under different scenarios for BRT in Bogota

Conclusions

Acknowledgments