

Margaret R. Marvin¹, G. M. Wolfe^{2,3}, R. J. Salawitch^{1,4,5}, T. P. Canty⁴, A. Ring⁴, D. L. Goldberg^{6,7}, A. Fried⁸

¹Department of Chemistry and Biochemistry, UMCP; ²JCET, UMBC; ³Atmospheric Chemistry and Dynamics Laboratory, NASA GSFC; ⁴Department of Atmospheric and Oceanic Science, UMCP; ⁵ESSIC, UMCP; ⁶Energy Systems Division, ANL; ⁷Computation Institute, UChicago; ⁸Institute of Arctic and Alpine Research, CU Boulder

Summary

- We use in situ observations of HCHO from DISCOVER-AQ to test different isoprene mechanisms within the CAMx model framework Simulated HCHO is highest in isoprene-rich areas, and averages 4-5 ppb
- in the Baltimore-Washington Region (BWR) throughout July of 2011 The CB6r2 and CB6r2-UMD mechanisms demonstrate cancelling effects
- on simulated HCHO relative to CB05
- All simulations underestimate HCHO with respect to observations
- The HCHO/NO₂ column ratio from CB6r2-UMD suggests that urban areas of the BWR are in transition between ozone production regimes

Background and Motivation

Isoprene (C_5H_8) comprises ~30% of global non-methane VOC emissions, and is highly reactive to oxidation by OH ($\tau \approx 1$ h)

- Formaldehyde (HCHO) is a high-yield product of isoprene oxidation as well as a precursor of tropospheric ozone production
- Uncertainties in isoprene chemistry and emissions impact modeled HCHO mixing ratios, by at least 12% and up to a factor of 2, respectively

(1) How do regional models respond to different isoprene mechanisms? (2) How well do regional models simulate isoprene oxidation products? (3) What are the implications for modeled ozone?

Gas-Phase Chemical Mechanisms

Mechanism	Species	Reactions	Reference
CB05	53	156	Yarwood et al
CB6r2	77	216	Ruiz and Yarw
CB6r2-UMD	77	216	Marvin et al.,
	•		

CB: Carbon Bond Mechanism

CB6r2-UMD increases HCHO production relative to CB6r2:

- 1. Adds HCHO as a product of HPALD + hv
- 2. Adds HCHO as a product of MVK + OH and MACR + OH
- 3. Adds HCHO as a product of GLYD + OH
- 4. Increases product fraction of HCHO in IEPOXO₂ + HO₂ and IEPOXO₂ + NO
- 5. Updates PAN equilibrium rate constants to IUPAC 2014

Evaluating Isoprene Oxidation Mechanisms in Regional Models Using In Situ Observations of Formaldehyde

., 2005 /ood, 2013 2017

In Situ Observations

Aircraft Campaign: DISCOVER-AQ (Phase 1)

Model Analysis

Regional Model: CAMx v6.40

