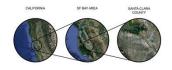
WUDAPT, uWRF, ENVI-MET Coupling for Site-Specific Urban Heat Island Analysis in San Jose, CA

Ian McRae¹, Ana Rivera², Frank Freedman³, Jingjing Dou⁴, Chao Ren⁵, Robert Bornstein³


¹Department of Landscape Architecture and Environmental Planning, UC Berkelev

²Department of Geography, San Jose State University, ³Department of Meteorology and Climate Sciences, San Jose State University, ⁴Institute of Urban Meteorology, Chinese Meteorological Administration, ⁵The Chinese University of Hong Kong

Motivation & Objectives

Sound environmental planning is among the top objectives of city governments. Urban heat islands are among the top stressors on city populations.

We present here progress on a linked WUDAPT, uWRF. ENVI-MET building-scale urban heat island analysis for sites in San Jose, California, Specific aims are to develop practical computational methods to evaluate site-specific performance metrics of alternative design scenarios, and to identify opportunities of data exchange between different platforms of spatial exploration and development.

Background

Previous work studying high temperatures at urban scale for Oakland, California. A similar type of analysis is envisioned for San Jose, applying WUDAPT, uWRF and ENVI-MET for advanced meteorological inputs broader architectural scenario analysis.

Acknowledgements

WUDAPT: http://www.wudapt.org/

uWRF: Salamanca, F., Krpo, A., Martilli, A. et al. 2010: Theor Appl Climatol (2010) 99: 331. https://doi.org/10.1007/s00704-009-0142-9

ENVI-MET: http://www.envi-met.com/

The authors thank Dr. Harrison Fraker and Dr. Irvna Dronova at the UC Berkeley College of Environmental Design for assistance in planning and carrying out this ongoing research.

WUDAPT

A Level 0 WUDAPT Local Climate Zones (LCZ) analysis was performed for San Jose, CA. Each LCZ characterizes a temperature regime associated with the local land use / land cover environment.

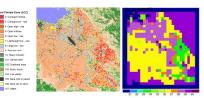
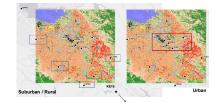
WUDAPT LCZ Analysis: San Jose (CA)

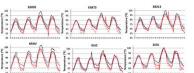
Figure 3. Training samples (left) and LCZs (right) constructed using the WUDAPT SAGA LCZ generation algorithm. The resulting LCZ field indicates a clear distinction between the compact newer residential developments on east, mixed industrial/residential in central, and older residential areas on west sides of city

								A	curac	y Mate	ix.									
(1.45		1	2	5	- 4	- 5	6	- 2		- 5	20	206	202	165	204	205	106	007.50	nine A	
1021Compatient-tax																				0.0
1021 Compatiburity																			25	- 01
102 6 Open high-rise																				
122 5 Open million																				
1224 Open Investor																			54	96.3
10211405-0010-018			0	0	0		20	0			0			0			0	0	15	0.0
10281-00-004			0	0			2	0	14		0			0			0	0	15	12.2
102Pdpeteb holt				0			2	0		2		1	2	1	5		0	0	1.9	28.0
at2 Million with the	20			0			0	0	3		1			0			1	0	5	201
	201			0			0	0		0	0	13		0			0	0	13	100.0
e123 Sortwardson	202																			180.0
	105																			- 60
	164																			180.0
	205																			0.0
	105																			100-0
LC2 0 Pater	107		0	0			0	0		0	0			0			0	90	53	100-0
SumProd																		30	195	
Accivati							51,776		3.846	180	100	65.667	25		50		53,553	100		

Table 1 Assessment matrix associated with the LCZ analysiss in Figure 3. The overall accuracy of the LCZ classification is 64%. Greatest misclassification are for open low rise and lightweight low rise, and open low rise and compact low rise.

Implementation of LCZs into uWRF


Figure 4. LCZs were resampled from the native 100 x 100 m grid to a 1 x 1 km grid for input to uWRF. Native grid (left), resampled grid (right). The distinction between land-use types on east, central and western sides of city is preserved (see Figure 3).

uWRF

uWRF simulations for San Jose have been carried out. To guide setting urban surface parameters, we performed a standard WRF and three uWRF simulations, comparing temperatures at urban and suburban/rural sites. We simulated the heat-wave period June 16 - 20, 2017.

Urban

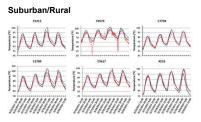
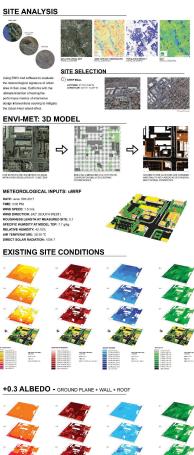



Figure 5. Two-meter temperatures: (black) observed, (blue) standard WRF. (red) three uWRF cases with different heat capacity, thermal conductivity and urban fraction specifications for urban land-use grids. Urban site comparisons on top, suburban/rural site comparisons on bottom.

ENVI-MET

