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1. INTRODUCTION  
Dispersion models simulate atmospheric 

transport and transformation of air pollutants 
emitted from sources to allow estimation of 
concentrations at receptors. Gaussian dispersion 
models can suffer from lengthy run-times for large 
urban areas which can quickly become prohibitive 
due the computational demands of calculating 
concentrations at a suitable number of locations. 
RapidAir offers an elegant solution, particularly 
when annual average concentrations are required. 

Here we describe the development and 
evaluation of a new dispersion model (RapidAir®, 
Ricardo-AEA Ltd) designed as a decision support 
platform, and describe a recent validation exercise 
in London, UK which was carried out by 
Strathclyde University, UK. Ricardo’s RapidAir 
model comprises several libraries written in the 
python programming language with functionality 
specific to air quality analysis (e.g. handling time 
series observation data, array based processing of 
road emissions). 

The modelling system is written using open 
source scientific computing libraries. RapidAir 
makes extensive use of the numpy, scipy and 
pandas python libraries which enable very efficient 
scientific computation though their use is relatively 
rare in the air quality community in the UK. The 
model is built inside an Anaconda environment 
with the above libraries in python 2.7.  

RapidAir has the following functions:  

• Convenient control of AERMET and 
AERMOD to create convolution kernels 

• Calculation of gridded road emissions with 
COPERT5 coefficients (>240 vehicle 
types) and Geographical Abstraction 
Library (GDAL) 

• Period mean road source dispersion 
model based on convolution of emission 
grids with AERMOD derived dispersion 
kernels 

• Automated background concentrations 
assimilation (UK only) 
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• Two street canyon models (USEPA 
STREET and AEOLIUS) 

• Statistical evaluation/plotting module 
based on python’s statsmodels library. 

RapidAir is set up using USEPA methods 
provided in their ‘Hotspot Conformity’ guidance 
(USEPA, 2015, Appendix J). Appendix J sets out 
methods specific to dispersion modelling of road 
traffic emissions in AERMOD- such as setting 
release height, initial plume depth and other 
factors which have been adopted in RapidAir. A 
useful feature of the model is the fact that an 
entire workflow (from gathering met observations 
through to model validation) can be set up and run 
from a single text file/python IDE, though we have 
also developed a menu driven UI in the open-
source Jupyter Notebook (http://jupyter.org/) 
format to make it easier for users to learn the 
model. 

 A key motivation for the development of 
RapidAir was our experience of a lack of a cost-
effective (to us) operational city-scale dispersion 
model with convenient run times, which does not 
require large amounts of manpower to operate. 

In this paper, we present some results from of 
a validation exercise based on annual mean 
concentrations of NO2 in London in 2008, closey 
following methods set out in a study by the UK 
Government.  

 

2. Methods 
2.1 Study area and receptor location 

We modelled concentrations of NOx and NO2 
in Greater London. This was the study area used 
in a previous Department for Environment, Food 
and Rural Affairs (DEFRA) Urban Model 
Evaluation exercise, which evaluated several 
existing models (Carslaw, 2011). We modelled 
annual average NOx and NO2 concentrations for 
2008; the same year used by the DEFRA study to 
enable statistical comparison between RapidAir 
and the models assessed in the DEFRA 
comparison.  

http://jupyter.org/
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We evaluated the model at 86 continuous 
monitoring locations from the London Air Quality 
Network (LAQN) monitoring network. For model 
evaluation purposes, the monitoring sites are 
designated as kerbside, roadside, suburban and 
urban background according to their proximity to 
road traffic sources. As in the DEFRA Urban 
Model Evaluation, we excluded any sites which 
collected less than 75 % data during 2008.  
 
2.2 Model description 

RapidAir uses a dispersion kernel based 
convolution procedure which operates in a similar 
way to algorithms used in image processing 
software (e.g. Gaussian blur, edge detection). 
Convolution is also widely used in the astronomy 
community. An idealized dispersion model plume 
(the kernel) calculated for a single small area 
source in AERMOD is convolved with a road traffic 
emission grid at the same resolution. The 
convolution procedure (which uses a scipy library 
in python, followed by a GDAL conversion 
procedure to GIS ready data) yields a continuous 
concentration surface comprising millions of 
overlapping plumes derived from the road source 
emissions. A useful feature is that model run time 
is linearly dependent only on the output number of 
cells (typically about 500 million) and is unaffected 
by the number of emissions sources in the domain 
(recent runs which are not reported here comprise 
several million discrete road sources). This is a 
key benefit compared with some models whose 
run time is linearly dependent both on 
resolution/number of receptors and number of 
sources. The RapidAir convolution model 
computes concentrations at hundreds of millions 
of discrete receptors in less than 3 minutes on a 
standard office laptop with 16GB RAM and an Intel 
i7 processor. For cases requiring a bigger grid the 
model includes a splitting algorithm which iterates 
over “tiles” describing the emissions- early tests 
have recently produced continuous concentration 
fields of annual mean NO2 at 3m resolution for the 
largest 6 cities in the UK with a total run time of 
less than 20 minutes. 

During the London study, regional background 
concentrations calculated by the DEFRA Pollution 
Climate Mapping (PCM) model were added to the 
pollution surface generated by RapidAir. We 
removed hot exhaust road sources of NOx prior to 
adding the background to the modelled pollution 
concentrations above to prevent double-counting 
of traffic related air pollutants. The last step was 
the empirically derived conversion of NOx to NO2.  

 
2.3 Street canyons 

In built-up urban areas air pollution can 
become trapped in street canyons surrounded by 
tall buildings. Exposure estimates may be 
improved by combining additional models that 
account for urban topography. Street canyon 
models range from complex computational fluid 
dynamics models to simpler empirical (e.g. 
USEPA STREET box-model) and semi-empirical 
models (e.g. Danish Operational Street Pollution 
Model (OSPM). 

Geospatial surrogates have been investigated 
to model the effect of street canyons on air quality 
in urban locations. Such metrics are commonly 
used in studies of urban climate where 
temperature and wind patterns are affected by 
building density and height. For example, sky view 
factor (SVF) can be used to indicate the presence 
of tall buildings and has been incorporated into a 
LUR models to estimate the presence of street 
canyons. Building height and/or volume 
information has also been observed to improve the 
accuracy of LUR model estimates (Gillespie et al., 
2016). Geospatial surrogates can be readily 
applied across entire cities in automated 
processes which reduce geometrical errors and 
aid efficiency. The use of geospatial surrogates 
also has potential to improve the reproducibility of 
dispersion model pollution estimates as the 
number of model design choices is reduced 
substantially (with corresponding substantial 
reduction in manpower costs). 

Of the 86 receptor locations we identified 19 
sites that were located within urban street 
canyons. Concentrations of NOx within these 
street canyons were estimated using two street 
canyon models: the STREET model (Dabberdt et 
al., 1973; Johnson et al., 1973) and the AEOLIUS 
Model (Buckland and Middleton, 1999). Both 
canyon algorithms are included in RapidAir. 

Building height data for London was used to 
create a 5 m raster created of the maximum 
building height within each cell. 

Sky view factor (SVF) was used to calculate 
this value using the building height raster as the 
input and a search radius of 200 m. 

Hill shading (HS) is commonly used to identify 
areas in shade as a result of surrounding 
topographical features. We calculated this using 
an elevation angle of 45 degrees (suggested to be 
most appropriate for steep terrain as is 
encountered in an urban environment. We 
calculated HS values for 8 sectors (i.e. every 45 
degrees) and averaged the HS values calculated 
to produce estimated HS value over the study 
area. 
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Wind Effect (WE) was estimated using a 
module in SAGA-GIS which predicts if an area is 
wind shadowed or exposed, where values below 1 
are shadowed and above 1 are exposed. As 
above for HS, WE values were calculated for 8 
sectors and the average if these values were 
used. A search radius of 200 m was used. 

A recent update to RapidAir has added an 
automatic street canyon allocator in a custom 
python module. Our most recent version of the 
London model has around 3000 individually 
treated street canyons which is populated with 
emissions and concentrations in the model in a 
few minutes. 
 

3. Results and discussion 
3.1 Model with no urban effects 

The baseline RapidAir kernel model (i.e. no 
urban morphology treatment) highlighted 
contributions from major roads in London, and 
Heathrow Airport in the west of the study area, 
however the model underestimated observed NOx 
concentrations at the receptor locations. The 
underestimation of the concentrations by the base 
model may be the result of uncertainties in 
background concentrations, road traffic emissions 
or monitoring locations. However, as we used 
publicly available open source data to generate 
the model we did not investigate these 
uncertainties further to ensure reproducibility of 
the model results and comparability with other 
groups who used the same data sets. 

It is likely that road traffic NOx emissions data 
are underestimated in the inventory we used. The 
European Environment Agency’s COPERT road 
traffic emissions model has been observed to 
under-predict historical NOx emissions from diesel 
vehicles in the UK fleet (Carslaw et al., 2011). 
Given the date of the data used in the model, the 
fact that evidence for COPERT under predicting 
traffic NOx only came to light around 2011, and 
the fact that COPERT was used by the GLA to 
make the emissions estimates in 2008, it is likely 
that reported under-prediction of emissions in the 
diesel fleet biased the road traffic NOx inventory 
towards under-prediction. 

We corrected the NOx kernel model for 
systematic underestimation bias using the 
regression equation derived between the modelled 
and measured concentrations following UK 
statutory guidance provided by DEFRA (2016). 
The receptor locations were split randomly into 
training (n = 57) and test (n = 29) data sets, with 
the latter used as an independent verification data 
set.  

The linear regression (using the training data) 
for the model adjustment of the raw model is 
shown in Equation 1: 

 
NOxobs = 1.98 * NOxmod                            (1) 
 

Where NOxobs and NOxmod are concentrations 
in µg/m3. 

Legislative limit values specified by the 
European Union and UK government are for NO2, 
and not NOx, therefore we converted RapidAir 
NOx concentrations to NO2 concentrations using 
the DEFRA NOx to NO2 model (version 3.2) which 
is recommended for use in UK air quality 
assessment for statutory purposes. The model 
was set to use the built-in fleet composition for 
London (which automatically sets the fraction of 
NOx emissions as NO2 (f-NO2)) and average 
regional oxidant concentration over the study area 
from the PCM model. Estimated NO2 
concentrations were plotted against NOx 
concentrations and fitted with a polynomial 
regression equation (Equation 1): 

 
NO2= -0.0001 * NOx2 + 0.2737 * NOx + 18.6 (2) 

 
Where NOx and NO2 concentrations are in 

µg/m3. This equation was used to convert annual 
mean NOx to NO2 in the model. 

NO2 concentrations predicted by RapidAir 
were similar to measured NO2 concentrations at 
most monitoring stations; however, the model 
underestimated concentrations at some very high 
concentration kerbside measurement sites. 
Underestimation could be attributed to urban 
morphologies (including street canyon effects) or 
underestimation in the emissions rates used to 
predict the NOx concentrations (Beevers et al., 
2012).  
  The correlation between modelled and observed 
NO2 concentrations was high (r = 0.77) and of 
similar magnitude to previous evaluations of 
dispersion models (e.g. r = 0.74 during an 
evaluation of NOx dispersion models carried out 
during the ESCAPE study (de Hoogh et al., 
2014)). 
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Figure 1: Annual mean NO2 concentrations over the 
Greater London conurbation for the RapidAir kernel 
model 

 

 
Figure 2: Scatter plot of NO2 estimated by RapidAir 
kernel model vs. observed concentrations at 86 stations. 
Receptors are colour coded to represent the different 
site types. Solid line represents 1:1 dashed lines 
represent FAC2 values. 

 

Station 
Type 

 
n 

 
FAC2 

 
NMB 

 
RMSE 
(µg/m3) 

 
r 

All 86 0.99 -0.05 17.1 0.8 
Kerbside 8 0.88 -0.25 45.1 0.7 
Roadside 40 1.00 -0.07 13.9 0.7 
Suburban 13 1.00 0.08 4.0 0.9 
Urban 
background 25 1.00 0.06 6.0 0.9 

Table 1: NO2 kernel model evaluation statistics (after 
adjustment for systematic bias) for LAQN receptor 
locations categorized by site type. 

   
DEFRA recommend that an air quality model is 
acceptable for use if more than half of its 
observations fall within a factor of 2 of the 
observations (Williams et al., 2011). 

The NO2 RapidAir model meets the FAC2 
criterion for all site types, with the lowest FAC2 
value calculated for kerbside sites (FAC2 = 0.88). 
Similar findings were reported in the DEFRA urban 

model evaluation exercise for NO2 which found 
that FAC2 values were lower for the kerbside sites 
than the three other site types tested (Carslaw, 
2011). 

 DEFRA also suggest that NMB values should 
lie between -0.2 and 0.2 (Williams et al., 2011). 
NMB values for RapidAir meet this criterion when 
all sites were considered together; and for the 
individual site types, with the exception of the 
kerbside sites. None of the models tested during 
the DEFRA model evaluation exercise met the 
NMB ‘acceptance values’ proposed by DEFRA at 
the kerbside sites. 
 

3.2 Model with canyon treatments 
A calibration equation was derived between 

Unadjusted modelled NOx vs. both modelled NOx 
and Surrogate for each of the three surrogate 
values investigated (Table 2a). Applying the 
calibration equations to the test NOx data resulted 
in similar coefficients of determination and 
regression equations to the RapidAir estimates 
(Table 2b). 

(a) Surrogate Measured NOx R2 

 RapidAir 1.98 * RapidAir_NOx 0.88 

 

SVF 

 
1.87 * RapidAir_NOx 
– 70.61 * SVF + 
55.90 

 
0.71 

 

WE 

 
2.00 * RapidAir_NOx 
– 90.99 * WE + 
85.43 

 
0.70 

 
HS 

 
2.01 * RapidAir_NOx 
– 54.04 * HS + 49.57 

 
0.69 

(b) Model Measured NOx R2 

 RapidAir 0.79*RapidAir_NOx 0.94 

 SVF 0.79*RapidAir_NOx 0.94 

 WE 0.78*RapidAir_NOx 0.94 

 HS 0.78*RapidAir_NOx 0.94 

Table 2: (a) Linear regression equations between 
receptor NOx (Measured NOx), and kernel model NOx 
concentrations and the surrogate variables for the 
training data set (n = 59); (b) Ordinary least squares 
regression equations between the measured and kernel 
model NOx concentrations (baseline and after surrogate 
correction) for the test data set (n = 29). 
 

Model Model_NOx (μg/m3) 

Kernel 1.98 * Meas_NOx, R2 = 0.88 
STREET 1.04 * Meas_NOx + 34.45, R2 = 0.75 
AEOLIUS 1.41 * Meas_NOx + 18.87, R2 = 0.73 

Table 3: Linear adjustment equations to account for 
systematic bias in kernel model performance. Equations 
are shown for the kernel model; the kernel model 
corrected and including surrogates; and kernel model 
including street canyon models. 
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Figure 3: Scatter plot of NO2 estimated by RapidAir kernel 
model vs. observed concentrations (NO2) (n = 86): (a) 
uncorrected concentrations from the base-kernel model; 
and the kernel model after correction using the 
surrogates for street canyons: (b) sky view factor (SVF), 
(c) hill shading (HS), (d) wind effect (WE), (e) STREET 
canyon model and (f) AEOLIUS canyon model. 

 
The difference in modelled concentrations 

between the STREET and AEOLIUS models was 
very small which is similar to previously published 
findings (Zhu et al., 2015). 

Despite the small change in model evaluation 
statistics the canyon models require less 
adjustment for systematic bias than the kernel only 
model (Table 3). Therefore, when this model is 
applied to areas of the city which do not have any 
measurements the model is less likely to be 
subject to over or under estimation than the 
standard model which does not attempt to address 
urban morphology.  

Model n FAC2 NMB 
RMSE 
(µg/m3) 

r 

Kernel 86 0.99 -0.05 17.1 0.8 
SVF 86 0.99 -0.06 16.3 0.8 
WE 86 0.98 -0.05 17.0  0.8 
HS 86 0.99 -0.06 17.0 0.8 
STREET 86 1.00 -0.09 15.9 0.9 
AEOLIUS 86 0.99 -0.08 16.4 0.8 

Table 4: Summary model evaluation statistics for annual 
mean NO2 at receptor locations. Statistics are given for 
the bias corrected Kernel only model, the kernel model 
after correction using the surrogates for street canyons 
and then bias corrected, and using the street canyon 
models with bias correction. 
  

4. Advantages and disadvantages 
The central focus of this work is to evaluate an 

air quality modelling platform aimed at the 
operational setting. The RapidAir model succeeds 
as an operational air quality model in the context 
of very large urban areas and as a decision 
support tool. 

A significant benefit with RapidAir 

is reduced computational burden. Run times of 10 
minutes or less present a benefit for the 
operational modeler and decision makers who 
require fast but robust analyses. The RapidAir 
platform allows extremely efficient policy testing 
and other “what if” model runs for new emission 
scenarios.  

The performance metrics are very similar to 
those computed for other dispersion modelling 
systems in the DEFRA inter comparison exercise. 
For example, the suite of RapidAir outputs for 
kerbside locations in London have NO2 RMSE 
values of 38.91 – 45.26 µg/m3 (r = 0.65 - 0.84, n = 
8) where the comparable models in the inter 
comparison have RMSE values ranging from 
29.39 to 67.09 µg/m3 (r = 0.15 - 0.93, n = 7). At 
roadside locations, the RapidAir outputs have NO2 
RMSE values of 12.78 – 14.28 µg/m3 (r = 0.70 - 
0.76, n = 40) where the models in the inter 
comparison have RMSE values ranging from 9.94 
to 19.69 µg/m3. (r = 0.38 - 0.89, n = 30). The key 
model metrics for the 2008 model run in London 
are very similar to those for standard modelling 
suites used in the UK and which are used and 
accepted by DEFRA for use in compliance 
assessments at the highest level of statutory 
European air quality reporting. 

The performance statistics for the surrogates 
for urban morphology are reasonably close to 
those from the models which treat canyons 
discretely. Again, our focus is on operational 
modelling where reproducible and efficient 
workflows are important. We would suggest that 
for compliance assessment RapidAir is used with 
either the STREET or AEOLIUS model options 
included as the run times are not significantly 
impacted by including these models. The model 
results should be compared with measured 
concentrations and the modeler may choose the 
best performing street canyon model for their 
case. The surrogate canyon models could be used 
as screening tools and perhaps to spatially 
delineate locations where the street canyon 
models should be invoked. 

 

5. Educational value and engagement 
  The RapidAir project would not have been 
possible without important contributions from 
groups like the USEPA, NOAA, UK Met Office, 
DEFRA, and the authors of python itself and the 
open source libraries we use in the model. Hence 
Ricardo take seriously the notion that we should 
return some value to the community as we have 
benefited so much from the efforts of others. 
Mainly we do this via educational outreach efforts 
in our lead developer’s home city. 



Presented at the 16th Annual CMAS Conference, Chapel Hill, NC, October 23-25, 2017 

6 

  The RapidAir project has provided a platform for 
Ricardo’s educational engagement with 
universities in Glasgow, UK. Some of the primary 
research and evaluation was done via a formal 
industrial sponsorship we provided to Strathclyde 
University, Glasgow. This engagement contributed 
to a recently successful PhD candidate (Nicola 
Masey, now of Ricardo) and we are industrial 
supervisors on two more projects. We also 
collaborated with Glasgow School of Art in 
providing a RapidAir model of Glasgow which was 
used by Trudi Hannah during a placement with us 
to create a physical air pollution model of the city. 
This was used to explore routes to better public 
engagement through visualization- the model was 
nominated for an international design award in 
2016.(https://www.informationisbeautifulawards.co
m/showcase/1614-3d-visualisation-of-air-pollution-
in-glasgow) . 
 

5. Future directions 
We are currently working on transitioning the 

model into an integrated platform with CMAQ or 
WRF-Chem providing chemical boundary 
conditions. Our CMAQ system is operational and 
produces hourly forecasts each day for the whole 
of the UK. We have developed a beta version of 
RapidAir that consumes the same WRF data via 
the MMIF processor to produce forecasts out to 
+48hrs for the city of London. However, we were 
not able to prepare results in time to present to the 
conference on this occasion. 
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