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1. INTRODUCTION 

 
There is growing interest in knowing air 

pollution levels at finer resolution. Enhanced 
methods to generate higher resolution and more 
spatially complete fields for PM2.5 and finer-sized 
particulate in particular would be beneficial since 
these are among the most harmful air pollutants 
for human health. Aerosol optical depth (AOD) 
data from the Moderate Resolution Imaging 
Spectrometer (MODIS) platform aboard the NASA 
Aqua and Terra polar orbiting satellites have been 
used to develop continuous PM2.5 fields at 
regional scale (e.g. van Donkelaar et al. 2015, Lee 
et al. 2016). Downscaled air pollution fields from 
regional fields using “hybrid” dispersion models, 
which combine outputs from regional and road-
resolving models, have been generated over the 
last decade for certain urban metropolitan areas, 
and work is ongoing to enhance this capability 
(e.g. Batterman et al. 2015, Zhai et al. 2016, Bates 
et al. 2017, Hood et al. 2017).  

As part of our NASA Health and Air Quality 
Applied Science Team membership (HAQAST, 
https://haqast.org/), our team is developing a 
hybrid dispersion modeling system that utilizes 
MODIS AOD to provide regional-scale PM2.5 
fields and computationally efficient dispersion 
models to downscale a user-specified sub-region 
of this field to fine scale (~ 100 m resolution). To 
develop the system, daily satellite-informed 
regional PM2.5 fields are being developed over 
California utilizing MODIS Dark Target 3-km AOD 
retrievals 
(https://darktarget.gsfc.nasa.gov/products/land-3).    
The dispersion modeling to downscale a sub-
region of this field combines Lagrangian 
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backwards trajectory and line-source models, the 
latter currently configured to simulate local 
variations of fine particulate fields due to major 
California roadways.  

Below we present a description of the system 
in its current state of development. We detail its 
design and demonstrate the procedure to 
downscale a sub-region within the satellite field by 
applying the system to a particular site and day. 
Currently, we have developed daily satellite-
derived PM2.5 fields over California for 2016, with 
previous years and updates to 2017 planned. 
While demonstrated here for a particular site and 
day, the downscaling dispersion modeling system 
can be applied readily to multiple sites and over 
multi-day time periods (e.g. monthly). 

 
2. SYSTEM DESIGN 

 
The components of the system for combining 

satellite-derived regional PM2.5 fields with 
dispersion modeling to arrive at a downscaled 
representation within a certain sub-region of the 
satellite-derived field are shown in Figure 1. AOD 
from Dark Target 3-km are taken from the Aqua 
overpass (~ 1230-1430 LST daily), and are 
mapped to daily-average EPA FRM site PM2.5 
measurements using a multi-regression model 
with meteorological variables from NLDAS-2 
(https://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.p
hp) as co-variates. Daily PM2.5 fields at 3-km 
resolution are then constructed by applying spatial 
surfacing to the regressed PM2.5 field using the 
procedure of Al-Hamdan et al. (2009, 2014). 
Further details are given in Section 3. 
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Figure 1: Components to construct regional PM2.5 
fields from MODIS Dark-Target 3-km satellite retrievals 
and downscale these to fine-scale using Lagrangian 
backwards and line-source dispersion models. 
 

The dispersion model fine-scale 
representation of a sub-region within the satellite-
derived PM2.5 field is generated by combining 
outputs from two models: the Lagrangian 
Background Model (LBM, Pournazeri et al. 2014) 
for regional PM2.5, and the line-source model of 
Venkatram and Horst (2006) for local PM2.5 due 
to road traffic. Inputs to the dispersion modeling 
are a regional-scale gridded PM2.5 emission field, 
gridded meteorological fields, and traffic counts 
and vehicular emission factors. Year 2012 PM2.5 
emission fields have been provided to us daily at 
4-km resolution by South Coast Air Quality 
Management District (SCAQMD), and for summer 
and winter periods by the Bay Area Air Quality 
Management District (BAAQMD). Collectively, 
these cover the main population and PM2.5-
affected areas of the state (Southern California 
including Imperial Valley, Bay Area, and Central 
Valley). Hourly gridded meteorological fields are 
from the initial forecast hour of the operational 3-
km High-Resolution Rapid Refresh (HRRR, 
https://rapidrefresh.noaa.gov/hrrr/). Annual 
average daily traffic (AADT) for light-duty vehicles 
and trucks are from data provided by the California 
Department of Transportation 
(http://www.dot.ca.gov/hq/tsip/gis/datalibrary/#Hig
hway) and emission factors from EMFAC2014 
(https://www.arb.ca.gov/msei/categories.htm). 

Collectively, the system therefore provides 
three independent measures of PM2.5 at a user-
specified sub-region: a satellite-derived regional 
value (PM25SAT), an LBM dispersion model 
regional value divided into primary and secondary 
portions (PM25REG,DM,P and PM25REG,DM,S), and a 
line-source dispersion model local-scale field for 
primary roadway contributions (PM25LOC,DM,P). To 
fuse the components, the dispersion modeling 
components are first summed:  

 

PM25DM(x,y) = PM25REG,DM,P + PM25REG,DM,S + 
PM25LOC,DM,P(x,y). 
 
The spatial average of this field over the sub-
region, <PM25DM>, is then calculated. The final 
downscaled field is then constructed by scaling the 
dispersion model field so that the average 
matches the satellite-derived value: 
 
PM25(x,y) = PM25DM(x,y) x [PM25SAT /<PM25DM>] 
 
The satellite-derived value, PM25SAT, therefore 
provides the overall average value and the 
dispersion modeling, PM25DM, the spatial 
distribution within the sub-region, distinguishing 
between PM2.5 entering the area from upwind 
(PM25REG,DM,P and PM25REG,DM,S, assumed 
spatially uniform within the grid) and that produced 
locally (PM25LOC,DM,P). Currently, we set the 
secondary regional PM2.5 to a multiple of the 
primary regional PM2.5 calculated by the LBM, i.e. 
PM25REG,DM,S = αPM25REG,DM,P, with α = 2 is 
currently set based on a rough ratio of inorganic 
secondary aerosol to vehicular and biomass 
organic components in analyses of speciated 
PM2.5 monitor data reported in previous studies 
(e.g. Hasheminassab et al. 2014). Work is ongoing 
to improve the secondary aerosol representation, 
considering both better empirical determinations 
and/or a physically-based parameterization built 
directly into LBM similar in design to what currently 
exists in the model for ozone chemistry (see 
Pournazeri et al. 2014). 

 
3. SATELLITE-INFORMED PM2.5 FIELDS 

 
We generated continuous spatial surfaces of 

daily PM2.5 on a 3-km grid for California for year 
2016 by merging daily PM2.5 measurements from 
the U.S. EPA Air Quality System (AQS), AOD 
measurements from the MODIS instrument 
onboard the Aqua earth-orbiting satellite, and 
meteorological data from NLDAS-2. Leveraging 
MODIS-derived data to complement EPA ground 
observation data, we estimated the daily PM2.5 

concentration fields by combining the data sources 
using multi-regression modeling, a B-spline 
smoothing model, a quality control procedure for 
the EPA AQS data and a bias adjustment 
procedure for MODIS/AOD-derived PM2.5 data. 
These algorithms are described in detail in Al-
Hamdan et al. (2009, 2014). The output of the 
surfacing algorithm are continuous spatial 
surfaces of daily PM2.5 on a 3-km grid for 
California. Merging AOD with surface observations 
of PM2.5 not only provides a more complete daily 
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representation of PM2.5 than either dataset alone 
would allow, but also reduces the errors in the 
PM2.5-estimated surfaces (Al-Hamdan et al., 
2009, 2014). PM2.5 surfaces over California 
based on combined daily AOD retrievals from 
MODIS Aqua Dark Target (3-km) and AQS data 
for selected days as well as the annual mean 
surface of 2016 are shown in Figure 2. 

The multi-regression model relating AOD to 
PM2.5 includes wind speed, wind direction, 
precipitation, temperature and relative humidity as 
co-variates. Fields for these variables are taken 
from the NLDAS-2 reanalysis. PM2.5 fields are 
then constructed by combining the multi-variate 
regression with the other parts of the procedure 
(B-spline smoothing, bias adjustment and QA/QC 
of EPA data) to produce the final satellite-derived 
PM2.5 fields as explained above and shown in 
Figures 2 and 3. Table 1 shows the Pearson 
correlation coefficient for single (AOD alone) 
versus multi-variable (AOD plus meteorological 
co-variates) regressions of Dark Target 3-km AOD 
to PM2.5. As seen, the addition of meteorological 
variables increases the coefficients in all cases 
except warm season (April through September) in 
Northern California. The values for single variate 
coefficients are similar to those found in other 
AOD to PM2.5 regressions for California (e.g. Lee 
et al. 2016). 

 
Table 1: Correlation (R-values) between AOD and EPA 

AQS PM2.5 for single variable and multivariable 
regressions for three regions in California. 

 

 
*Development of single variable regression model utilizes data 
from 2003 – 2013, correlations in table are for data from 2014 – 
2016. Development of multi-variable regression model utilizes 
data from 2010 – 2012, correlations in table are for data from 
2013. 
 

Validation analysis comparing final estimated 
satellite-informed PM2.5 grid cell values to the 
observed daily PM2.5 from non-FRM stations in 
the cell was performed. Non-FRM stations data 
are not used in constructing the PM2.5 surfaces, 
and therefore provide independent measurements 
for evaluation. Examples of such validation 
analysis plots and a map of the FRM and non-
FRM validation site locations in the Southern 
California region are shown in Figure 3. This 
validation analysis demonstrated generally high 
correlations (r = 0.7 to 0.9). The improved 
correlations compared to values in Table 1 

 
Figure 2. PM2.5 surfaces for selected days and 
annually for 2016 based on daily AOD retrievals from 
MODIS Aqua Dark Target (3-km). July 26, (a), 
September 18 (b), December 8 (c), and annual mean 
(d). Based on procedure of Al-Hamdan et al. (2009, 
2014). 
 

 
 

Figure 3. Validation analysis comparing satellite-
informed PM2.5 grid cell values to observed daily PM2.5 
from non-FRM stations in the cell. Map of site locations 
on lower right. 

 
indicate the enhanced accuracy of the combined 
methodology (utilizing B-spline smoothing, bias 
adjustment and QA/QC of EPA data) over that 
from regression analysis alone. 

 
4. DISPERSION MODEL DOWNSCALING 
 
Downscaling a sub-region within the satellite-
derived PM2.5 field is carried out by merging the 
PM2.5 values of the satellite field sub-region with 
output from two dispersion models: the LBM 
model and a fine-scale line-source model. LBM 
simulates the regional background PM2.5 entering 
the sub-region, whereas the fine-scale model 
simulates the local variations internal to the region. 
At this time, the fine-scale model is designed for 
road-traffic emissions, however other internal 

Single 
Variable

Multi-
variable

Single 
Variable

Multi
-variable

Single 
Variable

Multi
-variable

Full Year 0.21 0.27 0.18 0.40 0.26 0.37
Warm Season 0.34 0.23 0.30 0.35 0.25 0.44
Cold Season 0.16 0.39 0.35 0.52 0.35 0.36

NCAL CCAL SCAL

Period/Season
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sources can be included by utilizing other 
available fine-scale dispersion models (e.g. 
AERMOD for point or area sources). We 
demonstrate the downscaling procedure for a 
single-day at a particular sub-region: December 8, 
2016 over a 15 x 15-km area around the Mira 
Loma monitor in Riverside County (Southern CA). 
 
a. LBM 

LBM (Pournazeri et al. 2014) simulates 
regional primary pollution due to ground-level 
sources by advecting a column of air backwards in 
time, injecting pollutant into the column through 
surface emission flux along the backwards 
trajectory path. In its implementation here, LBM 
assumes pollution is mixed evenly through the 
depth of the column (assigned to the PBL depth) 
over all hours of backwards travel. In its full 
implementation, a shallower mixing depth is 
assumed for the first hour of backwards travel to 
account for incomplete vertical mixing of 
emissions emitted close to the receptor. LBM also 
enables chemical transformation of NOx and 
VOCs to ozone through a parameterized chemical 
reaction set. The extension of the 
parameterization to PM2.5 is ongoing work.    

LBM simulated backwards trajectories of 0700 
LST air arriving at Mira Loma on December 8, 
2016 are shown in Figure 4. Shown are 
backwards trajectories for a central trajectory and 
two others either side of this from altering the input 
winds by plus/minus five degrees. The trajectories 
are over twelve backwards integration hours at an 
hourly time step using HRRR model input winds. 
These are overlaid on the annual average primary 
emission field for year 2012 supplied to us by 
SCAQMD so that the coupling of trajectory 
position with emissions is explicitly seen. While 
only the annual emission field is shown on the 
plot, the computation accounts for hourly emission 
variations by implementing a domain-averaged 
diurnal emission profile calculated from the 
supplied input gridded field.  

LBM calculated PM2.5 concentrations at 0700 
LST December 8, 2016 along with the daily 
average for the day computed from hourly 
calculations at three-hour increments (01, 04, 07, 
10, 13, 16, 19 and 22 LST) are shown in Table 2.  
As seen, there is modest sensitivity of LBM results 
to the value of back-trajectory time step, and very 
small difference in results for central versus results 
calculating from the weighted-average of the 
central and  two side trajectories. We take the 
“central trajectory, Δt = 60 min” daily-average 
concentration for further illustration of the  

 
Figure 4: Lagrangian Background Model (LBM) back 
trajectories of air arriving at Mira Loma at 0700 LST on 
December 8, 2016 overlaid on the annual average 
primary emission field (μgm-2s-1). Simulations driven by 
HRRR model meteorology downloaded from 
http://hrrr.chpc.utah.edu/. Shown are central trajectory 
(dashed) and “side” trajectories (solid) based on altering 
input winds plus/minus five degrees.  
 

Table 2: LBM Concentrations (μg/m3) 
 December 8, 2016 at Mira Loma* 

 
 

Central Trajectory 
Weighted- 
Average** 

Period ∆t = 60 ∆t = 10 ∆t = 60 ∆t = 10 
0700 LST 9.4 7.8 9.6 7.9 
Daily-avg 5.6 5.6 5.7 5.7 
* Δt is value of backwards integration time step used in 
simulation in minutes. 
** Weights of 0.5, 0.25 and 0.25 assumed for central 
and two side trajectories, respectively. See Figure 5. 

 
downscaling procedure: PM25REG,DM,P = 5.6 μg/m3. 
Multiplying this by two to account for the 
secondary portion (see Section 2) gives 
PM25REG,DM,S = 11.2 μg/m3. These two values are 
added to give 16.8 μg/m3, which is in turn passed 
to the line-source model to complete the 
downscaling. 

 
b. Line-Source Model 

The primary local portion of PM2.5 
(PM25LOC,DM,P) is calculated using the line-source 
dispersion model of Venkatram and Horst (2006). 
The model is applied to downscale the satellite-
derived PM2.5 concentration within a 15 by 15 km 
sub-region around Mira Loma on December 8, 
2016. Downscaled fields to a grid of 93.75 m are 
generated (3 km divided into 32 sub-grids).  

The major California freeways and traffic flow 
implemented into the fine-scale model are from 
CALTRANS traffic sensor data 
(http://www.dot.ca.gov/hq/tsip/gis/datalibrary/#Hig
hway). We utilize the AADT reported for light-duty 
vehicles and trucks in separate line-source 
calculations for each vehicle type, which are then 
summed to give the total field. Freeway line-
sources are defined as line segments connecting 
traffic sensors. Figure 6 illustrates the locations of  
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Figure 5: Major roadways implemented into the line-
source dispersion model for the area around Riverside 
Country (Southern California). Circles indicate locations 
of mileposts where AADT is measured. 

 
traffic sensors contained in the CALTRANS data 
shapefile in the Riverside County area. 

The emission factors of light-duty vehicles and 
trucks are calculated using EMFAC2014 
(https://www.arb.ca.gov/msei/categories.htm) as 
the average of emission factors for the various 
sub-categories of these vehicle types within the 
EMFAC2014 output, weighted by vehicles-mile-
traveled for each vehicle sub-category. The 
calculated PM2.5 emission factors for light-duty 
vehicles and trucks are 0.0152 gr/km/vehicle and 
0.1275 gr/km/vehicle, respectively. 

Once line sources based on freeway 
segments are determined, the concentration 
contribution of each line source segment at the 
93.75 m spaced receptors were simulated. 
Meteorological inputs were from the HRRR grid 
value around Mira Loma. For this illustration, we 
carried out simulations at the same three hourly 
increments as used for LBM results (Table 1), and 
averaged to arrive at the daily-average primary 
local-scale PM2.5 concentration field, 
PM25LOC,DM,P(x,y).  

The satellite-derived daily PM2.5 
concentration averaged to the sub-region on 
December 8, 2016 is 19.5 μg/m3. This satellite-
derived value, the LBM value of 16.8 μg/m3, and 
the fine-scale concentration field are then merged 
using the equations in section 2. The resulting 
downscaled field is shown in Figure 6. As 
indicated, most of the local variation is confined to 
very close to the freeway.  

 

 

 
Figure 6: Downscaled PM2.5 concentrations within a 15 
by 15 km sub-area of the satellite-derived field around 
Mira Loma CA (red dot) on December 8, 2016. Area 
average of field is 19.5 μg/m3, matching the satellite-
derived value. 
 
5. IMPLEMENTATION OF HRRR to LBM 
 

In its original implementation, LBM is driven by 
observed meteorology from nearest monitor 
locations. Here, we extend its application to utilize 
gridded model winds from the initial hour of hourly 
real-time NOAA HRRR model output (see Section 
 
2). Comparison of summer 2017 wind roses from 
the HRRR model with measured climatological 
summer-month period values (other years) at 
several Southern California sites were largely 
consistent (see 
https://www.cmascenter.org/conference//2017/slid
es/freedman_satellite-dispersion_2017.pdf). 

 The LBM with HRRR meteorology was 
evaluated over 60 simulation days from June 2 – 
September 21, 2017 for PM2.5 at Mira Loma. 
Eight hours per day at even three-hour increments 
were simulated for a total of 480 hours of 
simulations. Comparison of model concentrations 
with observations are shown in Figure 7. Hourly 
results show considerable scatter, while daily 
averages more coherent and generally increase 
as observations increase. Daily averages 
underestimate observations on average, as 
expected since the modeling does not account for 
secondary PM2.5. 
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Figure 7: Hourly (top panel) and daily-average (bottom 
panel) LBM model primary PM2.5 concentrations driven 
by the NOAA HRRR model meteorological inputs vs. 
measurements at Mira Loma. Runs are for June 2 – 
Sept 20, 2017 at three-hourly intervals 
(1,4,7,10,13,16,19,22 local time, n = 480 hours, 60 
days). For each run, back trajectories were calculated 
twelve hours at a one-hour time step. 
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