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1. INTRODUCTION 
 
Clouds directly modulate the radiation budget 

over their area of influence. Changes in cloud 
cover, therefore, can have pronounced effects on 
the meteorological conditions of a given area. In 
turn, changes in meteorological conditions greatly 
affect chemical processes in the atmosphere. 
Unfortunately, numerical weather prediction 
(NWP) models fall short of accurately producing 
clouds at the correct time and location with respect 
to observations. This results in an inaccurate 
representation of the atmospheric state throughout 
the model domain. These errors inhibit the model’s 
ability to accurately predict variables such as 
temperature and radiation, and lead to a 
misrepresentation of vertical mixing and 
inaccurate development of the boundary layer.  
These errors then impact chemistry by modifying 
photodissociation reaction rates, biogenic 
emission rates, wet removal, and vertical mixing of 
pollutants. Reducing the errors in these fields is 
highly advantageous for improving the 
meteorological inputs into air quality models, 
especially for State Implementation Plan (SIP) 
modeling. Through assimilation of Geostationary 
Operational Environmental Satellite (GOES) 
derived cloud fields within the Weather Research 
and Forecasting (WRF) model, cloud placement in 
time and space within the model can be improved. 

While many studies focus on improving NWP 
models for forecasting applications, the focus of 
this study is to improve the simulation of clouds in 
space and time in order to better represent the 
physical atmosphere for air quality studies. More 
specifically, the goal is to improve model 
simulations for SIP modeling.  Improving cloud 
forecasts, including non-precipitating clouds which 
are important for atmospheric chemistry, is difficult 
due to the lack of available observations at the 
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necessary spatial and temporal scales. Standard 
weather service observations are not dense 
enough to be used for cloud specification, and the 
NWS WSR-88D radar network is not designed to 
be sensitive enough to retrieve cloud droplet 
information.  Therefore, geostationary satellites 
remain the only dataset which provides sufficient 
spatial and temporal resolutions to quantify cloud 
fields. The GOES Imager has a spatial resolution 
of 1-km over the visible channel and 4-km 
resolution over the infrared channel for timescales 
down to an hour or less.  From this data, a cloud 
albedo can be retrieved from the visible channel, 
while the infrared channel is used to estimate the 
cloud top heights.  The GOES satellite retrieval of 
cloud albedo is described in Haines et al. (2004) 
and is based on an implementation of the Gautier 
et al. (1980) method with the improvements from 
Diak and Gautier (1983). These satellite derived 
fields are used to define the location of clouds 
within the atmosphere.        

Since these simulations are conducted 
retrospectively, a wide array of observational and 
model analysis data is available throughout the 
simulation time period. This allows the Four 
Dimensional Data Assimilation (FDDA) technique, 
based on Newtonian Relaxation or “nudging”, to 
be used throughout the simulation time period.  
Nudging works by adding artificial forcing terms to 
the governing equations to force the model 
towards an observed state (Stauffer and Seaman, 
1990). In this work, analysis nudging, which entails 
nudging to a gridded analysis field of 
meteorological variables at each grid point, is used 
to assimilate GOES derived clouds into WRF to 
improve cloud performance in retrospective 
modeling simulations.          

 
     

2. METHODOLOGY 
 
The assimilation technique is based on 

creating a dynamic environment that is supportive 
of cloud formation or removal through the use of 
GOES cloud information.  The basic approach is 
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to create positive vertical motion within the model 
to produce clouds, and negative vertical motion to 
dissipate clouds, based on GOES cloud fields. 
The use of FDDA allows for the assimilation of 
horizontal wind fields into the model domain at 
specified times. Thus, the developed technique 
calculates the necessary vertical velocity needed 
to create or dissipate clouds within WRF, and then 
derives the corresponding horizontal wind field 
needed to produce the vertical motion. This new 
horizontal wind field can then be assimilated into 
the model through a FDDA field.  

First, the locations where the model cloud 
fields and GOES clouds fields disagree are 
determined.  In order to compare model cloud 
fields with GOES derived cloud albedo, a model 
cloud albedo was derived.  This was done by 
completing a model simulation without 
microphysics and cumulus parameterization 
schemes enabled to determine the max insolation 
predicted by the model’s radiation scheme at 
every grid point across the domain. The ratio in 
the insolation fields from the model simulation with 
cloud fields, and without, allows the model cloud 
albedo to be determined. Using a ten percent 
albedo threshold to identify if a model or GOES 
grid is flagged as cloudy, areas of disagreement 
between the two can be determined. The 
disagreement areas are split into two categories: 
underprediction and overprediction of clouds by 
the model.  Underprediction locations are where 
the model is clear (cloud albedo less than 10%), 
and GOES is cloudy (cloud albedo greater than 
10%).  Overprediction areas are locations where 
the model is cloudy when the satellite is clear. 
Because the GOES cloud albedo is retrieved from 
the visible GOES channel, the assimilation window 
is limited to the daytime.  With the modeling 
domain covering the Contiguous United States 
(CONUS) region, the assimilation window was 
chosen as 14-23 UTC to ensure that the solar 
zenith angle was as small as possible over the 
model domain.  This reduces the error in the 
calculation of both the model and the satellite 
derived cloud albedos.   

Once the disagreement areas between the 
model and satellite are known, an analytical 
method for determining vertical velocities 
necessary to create or remove clouds within the 
model is applied.  In order to create the derived 
vertical motion within the model, a one-
dimensional variational technique based on 
O’Brien (1970) is used to determine the 
divergence fields.  The derived divergent 
component of the wind is then blended back into 
the horizontal wind field.  The variational technique 

requires four inputs which are effectively the 
boundary conditions.  These inputs are: the target 
vertical velocity, the target height, the bottom 
adjustment height, and the top adjustment height. 
These inputs are derived for both the 
underprediction and overprediction cases.      

 

2.1 Underprediction 
 

Underprediction by the model is characterized 
by locations where the model fails to produce 
clouds in locations where GOES is cloudy.  In 
these locations the goal is to produce a cloud 
within the model that is comparable to the satellite 
field. Using GOES infrared temperature and cloud 
albedo estimates, the observed cloud top and 
bottom is estimated based on the model column’s 
vertical profile. The observed cloud top height is 
determined by calculating the height at which the 
model column temperature is equal to the derived 
infrared temperature of the observed cloud.  With 
the cloud top height known, the cloud thickness is 
estimated based on the GOES cloud albedo.  This 
is done by assuming that an increase in cloud 
albedo indicates an increase in cloud thickness 
and that there is only one cloud layer. Based on 
the cloud thickness, it is possible to determine the 
maximum height at which saturation must occur 
within the model to produce an equivalently thick 
cloud below the column tropopause.  Next, the 
lifted condensation level of each model vertical 
layer is determined. The layer which has to be 
lifted the smallest distance to become saturated 
and can achieve saturation before the determined 
maximum height is used to calculate the maximum 
vertical motion.  The target vertical velocity is 
calculated by taking the distance the layer has to 
rise to reach saturation divided by 45 minutes.  
Forty-five minutes is selected because GOES 
assimilation occurs on an hourly time scale, and 
thus, it is necessary to create the cloud within an 
hour, indicating that saturation must occur before 
an hour of time. The target height is then defined 
as the height at which the target model layer 
reaches its lifted condensation level.  The top 
adjustment height is set to be the target height 
plus the estimated GOES cloud thickness.  Finally, 
the bottom adjustment height is defined to be the 
target model layer minus one kilometer. However, 
for the bottom adjustment height, thresholds are 
set to ensure that this level does not reach the 
surface.  This is done to ensure the assimilated 
nudged winds minimally affect the surface layer of 
the model. 
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2.1 Overprediction 
 
 Overprediction by the model is characterized 
by locations where the model produced clouds in 
locations where GOES was clear. First, the 
locations of clouds within the model column are 
determined.  The presence of clouds is 
determined by the total cloud liquid water (CLW) in 
each vertical layer.  The CLW is the sum of the 
liquid and ice water within each layer.  The layer 
with the maximum amount of CLW is used to 
calculate the downward displacement necessary 
to sufficiently warm the air parcels in order to 
evaporate the cloud.  The distance is calculated as 
the vertical distance that a parcel must sink and 
result in a relative humidity that is less than sixty 
percent.  The calculated distance divided by 45 
minutes then yields the target vertical velocity.  
The target height is set to the height of the layer 
with the maximum CLW.  The cloud top and cloud 
base is then determined by setting a 

1.0 𝑥 10−6 𝑘𝑔 𝑘𝑔−1 CLW threshold to indicate a 
cloud. The top adjustment height is then 
calculated as the model cloud top height plus one 
kilometer or the column troposphere height, 
whichever height is less.  The bottom adjustment 
height is calculated as the height at which the 
layer containing the maximum CLW will evaporate 
minus one kilometer, or the determined model 
column cloud base minus a quarter of the distance 
between this point and the surface, whichever 
height is less. Similar to the underprediction case, 
a minimum threshold height is set to ensure the 
bottom adjustment height does not reach the 
surface.     

 

3. MODEL CONFIGURATION 
 
The WRF-ARW version 3.6.1 was used to 

conduct model simulations over the August 2006 
and 2013 time periods. For each time period, two 
different simulations were conducted. The first is 
the baseline simulation (Control) in which no 
satellite data is assimilated, and the second 
simulation includes satellite assimilation (Cloud 
Assimilation).  The simulations were performed on 
a parent 36-km domain covering the CONUS area, 
a nested 12-km domain covering the 
South/Southeastern U.S., and a nested 4-km 
domain covering Eastern Texas.  While the 
domains between the 2006 and 2013 simulations 
were similar, there were some slight east/west 
shifts in the 12- and 4-km domains. Important 
physics options for the August 2006 and 2013 
model simulations are shown in Table 1. 
 

Table 1. Physics options used for the WRF model 
simulations. 

Physics August 2006 August 2013 

Shortwave 
Radiation 

Dudhia (Dudhia, 
1989) 

RRTMG (Iacona 
et al., 2008) 

Longwave 
Radiation 

RRTM (Mlawer 
et al., 1997) 

RRTMG (Iacona 
et al., 2008) 

Land Surface 
Model 

4-layer Unified 
Noah (Tewari et 

al., 2004) 

4-layer Unified 
Noah (Tewari et 

al., 2004) 

Planetary 
Boundary Layer 

YSU (Hong et 
al., 2006) 

YSU (Hong et 
al., 2006) 

Cloud 
Microphysics 

Lin (Lin et al., 
1983) 

Thompson 
(Thompson et 

al., 2008) 

Cumulus 
Parameterization 

Kain-Fritsch 
(Kain, 2004) 

with the 
moisture-
advection 

trigger (Ma and 
Tan, 2009) 

Kain-Fritsch 
(Kain, 2004) 

with the 
moisture-
advection 

trigger (Ma and 
Tan, 2009) 

Analysis 
Nudging 

U, V, T, Q U, V, T, Q 

 

4. MODEL EVALUATION 
 
To validate the assimilation technique, both 

the Control and Cloud Assimilation model 
simulations were compared to surface 
observations and GOES retrievals.  The 
METSTAT package developed by Ramboll 
Environ was used to determine the model mean 
bias (MB) and root mean square error (RMSE) for 
wind speed, temperature and mixing ratio.  For 
wind direction, MB and mean absolute gross error 
(MAGE) was calculated. Precipitation MB and 
RMSE were also calculated. Model predicted 
downwelling radiation was also evaluated against 
U. S. Climate Reference Network (USCRN) 
pyranometer measurements.  

In order to determine how well each model 
simulation performed with respect to clouds, a 
cloud agreement index (AI) was developed to 
quantify the model cloud performance. The AI is 
calculated as the percentage of the total grids 
which agree with the satellite and is expressed as: 

 

𝐴𝐼 =
𝐴 + 𝐷

𝐴 + 𝐵 + 𝐶 + 𝐷
                           (1) 

 
where A represents the number of grids where 
both the model and GOES indicates clouds, B 
represents the number of grids where GOES 
indicates clouds and the model is clear, C 
represents the number of grids where GOES is 
clear and the model is cloudy, and D represents 
the number of grids where both GOES and the 
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model are clear. The grid cells were characterized 
as cloudy or clear based on the derived cloud 
albedos for the model and satellite using a ten 
percent albedo threshold to signify a cloudy cell.  

 

5. RESULTS 
 

5.1 Cloud Performance 

 
In order to determine how well each model 

simulation performed with respect to clouds, the 
daily average AI was calculated.  The daily 
average AI for August 2006 for the 36-km, 12-km, 
and 4-km domains are shown in Figure 1.  
Likewise, the August 2013 daily average AI is 
shown in Figure 2. The results in Figure 1 and 2 
show that the assimilation technique improves the 
AI on every day of the simulation period for the 36-
km and 12-km domains.  At the 4-km domain, the 
improvement is not as significant, but on the 
majority of the days, the assimilation still improves 
the agreement with GOES. The variability in the AI 
for the 4-km domain can be attributed to the more 
transient nature of clouds within the smaller grid 
cell over a time period of one hour. The average 
daily percent change in the AI over the August 
2006 time period was found to be positive 14.02%, 
11.3%, and 5.12% for the 36-km, 12-km, and 4-km 
domains, respectively.   
 

 

 

 
Figure 1. Daily average AI for the Control (Blue) and 
Cloud Assimilation (Red) simulation over August 2006. 
Top is the 36-km domain, middle is the 12-km domain, 
and bottom is the 4-km domain. 
 

For the August 2013 time period, the average daily 
percent change in AI was found to be positive 
13.26%, 10.06%, and 5.93% for the 36-km, 12-km, 
and 4-km domains, respectively.  Comparing the 

two years, we find that the improvement in the 
cloud performance was consistent across years.  
 

 

 

  
Figure 2. Daily average AI for the Control (Blue) and 
Cloud Assimilation (Red) simulation over August 2013. 
Top is the 36-km domain, middle is the 12-km domain, 
and bottom is the 4-km domain. 
 

  The spatial fields of model/GOES cloud 
agreement and cloud albedo reveals the overall 
effect of the assimilation technique. Figures 3 and 
4 show spatial plots of AI at the 36-km and 12-km 
domains, respectively. From these figures, it is 
clear that the assimilation technique reduces the 
amount of under and overprediction by the model.    
 

 
Figure 3. Spatial plot of AI on August 12, 2006 at 17 
UTC for the 36-km domain. Green represents areas 
where the model and GOES is clear, red represents 
areas where the model is cloudy and GOES is clear, 
orange represents areas where the model is clear and 
GOES is cloudy, and gray represents areas where the 
model and GOES are cloudy. 
 

Figure 5 shows how the assimilation technique 
improves the spatial distribution of clods in terms 
of cloud albedo. While the exact magnitude of the 
cloud albedo is different than GOES, the 
improvement in the spatial pattern of clouds with 
the use of cloud assimilation is clearly evident.      
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Figure 4. Spatial plot of AI on August 27, 2013 at 22 
UTC for the 12-km domain. Green represents areas 
where the model and GOES is clear, red represents 
areas where the model is cloudy and GOES is clear, 
orange represents areas where the model is clear and 
GOES is cloudy, and gray represents areas where the 
model and GOES are cloudy. 
 

 
Figure 5. Spatial plot of cloud albedo at 17 UTC on 
August 12, 2006 over the 4-km domain.  

 

5.2 Surface Statistics 
 
The surface statistics with respect to wind 

speed and direction, temperature, mixing ratio, 
and precipitation were calculated.   
 

 

 

 

 
Figure 6. Surface statistics for August 2006. From top to 
bottom, 12-km temperature RMSE, 12-km mixing ratio 
RMSE, 4-km wind direction MAGE, and 4-km wind 
speed MB. 

Figure 6 shows comparisons between the Control 
and Cloud Assimilation simulations for select grids 
of temperature, mixing ratio, wind direction and 
wind speed which are representative of the effect 
of the cloud assimilation on the surface statistics.  
Generally, the cloud assimilation reduces the error 
in temperature and mixing ratio while slightly 
increasing the error in the wind speed and 
direction.  However, the difference in the wind 
statistics between the Control and Cloud 
Assimilation simulations becomes less as the 
model grid spacing is reduced.    
 The assimilation technique also reduced the 
error with respect to NCEP’s stage IV precipitation 
product.  Figure 7 shows the 4-km precipitation 
RMSE for the Control and Cloud Assimilation 
simulations for August 2006.   
 

 
Figure 7. Precipitation RMSE for the 4-km domain for 
August 2006. 
 

At the 4-km resolution, there is still some variability 
in the error reduction due to advection processes, 
but the majority of the time the error is reduced.   
 The final evaluation of the model results was 
with respect to USCRN pyranometer stations.  For 
this, linear comparisons were made. Figure 8 
shows the comparison of the model predicted to 
the observed shortwave downwelling radiation. 
The assimilation technique was found to improve 
the predicted shortwave radiation.  
 

 
Figure 8. Model predicted (4-km) downwelling 
shortwave radiation vs observed at two different 
USCRN observations sites in Texas. Blue is the Control 
simulation and Red is the Cloud Assimilation simulation. 

 
The coefficient of determination (R2) was found to 
be greater for the Cloud Assimilation simulation, 
0.71 compared to 0.65 and 0.67 compared to 
0.47, at both locations. This indicates that the 
assimilation technique improves the ability of the 
model at predicting shortwave radiation due to 
improved cloud performance.  
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6. CONCLUSION 
 
In this study, GOES satellite derived cloud 

albedo and cloud top temperature information was 
assimilated into the WRF model to improve the 
placement of clouds in space and time. An 
analytical technique for estimating vertical 
velocities necessary to produce or dissipate 
clouds based on the observations was developed. 
The results indicate that the cloud assimilation 
technique improves the model prediction clouds in 
space and time when compared to GOES cloud 
fields. The assimilation technique was tested for 
two different time periods, August 2006 and 
August 2013, and used slightly different 
configurations but the improvement was 
determined to be consistent. The average daily 
percent change in the AI for both the August 2006 
and August 2013 simulations were found to be 
greater than 13%, 10%, and 5% for the 36-km, 12-
km, and 4-km domains, respectively. At the same 
time, the cloud assimilation lead to a reduction in 
the precipitation error and improved the predicted 
downwelling shortwave radiation.     
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