AirWaterGas

Assessing the Impacts of Emissions from Oil and Gas Extraction on Urban Ozone and Associated Health Risks

Shannon L. Capps¹, Rene Nsanzineza¹, Matthew D. Turner¹, Daven K. Henze¹, Shunliu Zhao², Matthew G. Russell², Amir Hakami², and Jana B. Milford¹

Canada's Capital University

U.S. Energy Sector Shifts & Emissions

Oil and gas production emits NO_x and VOCs at least through engines powering drilling rigs & compressors, condensate storage tanks, and pneumatic devices.

Oil & Gas in the Rocky Mountain region

(Thompson et al., 2014)

Oil & Gas in the Rocky Mountain region

- Ambient VOC concentrations from flask canister observations
- March May 2013
- Colorado Department of Public Health and Environment (Denver, Platteville) and Thompson et al. (Erie) measurements

Ethene

Propene

trans-2-Butene

(Thompson et al., 2014)

Acetylene

Importance of Ozone Precursors in Front Range

105 29' 40" W 40 42' 47.1" N

105 29' 40" W

40 33' 17.4"

West

Fort Collins

Vellinator

14

- History of challenge to achieve attainment, including current status of • marginal nonattainment.
- Efforts to comply with • National Ambient Air **Quality Standards**
- **DISCOVER-AQ and FRAPPE** • missions to help understand challenges

Rocky Mtn

Evaluation of Oil & Gas **Contributions to MDA8 Ozone**

Min= -0.016 at (88,73), Max= 0.685 at (2,17) Influence of *Eagle Ford shale emissions* on daily maximum 8-hr average (MDA8) ozone concentrations in eastern Texas explored through *natural gas pricing* for 33 day episode.

Min= -0.838 at (2,17), Max= 0.005 at (82,71)

(Pacsi et al., 2015)

Attributing Ozone Effects to Emissions with CMAQ adjoint

Emissions influences are spatially resolved at the grid scale.

(Hakami et al., 2007)

Modeling Episode & Approach

May-September 2007

Emissions EPA NEI 2008v2 with BEIS 3.14

Chemistry Carbon Bond 05

Meteorology WRF v3.1

Resolution 24 layers | 36x36 km²

Model CMAQ adjoint

Example mean MDA8 O3 from week long run in May 2007

Cost Functions MDA8 | ozone-related health risks in urban areas adjacent to oil and gas development

(Capps et al., *in prep*)

Evaluating Emissions Influences on MDA8

to be assessed.

20

 $\mathbf{0}$

40

Representative July MDA8 Ozone (ppb)

60

80

U.S. Energy Information Administration www.eia.gov/oil_gas/rpd/shale_gas.pdf

Estimate Risk due to Ozone Exposure

where M_0 is the baseline mortality, P is the exposed population over 30 years old, B is 0.0427% per ppb O₃, and C is the 6-month mean of maximum hourly O₃.

 $\Delta \text{Risk} = 1 - e^{-\beta \Delta C}$

(BenMAP | Jerrett et al., 2009)

Enabling Emissions Scaling Factor and Absolute Emissions Sensitivities

- Added sensitivities with respect to *absolute emissions* and *emissions scaling factors* at each layer (with Matt Turner).
 - Each array is are propagated through the ACM2 continuous adjoint of vertical diffusion.

• Adjoint-based influence of ethene on sum of June 1-7 average MDA8 for the Denver CSA within 25% of finite difference value (10% perturbation).

Denver MDA8 Sensitivities June 1-7

∂(Denver MDA8)

 $\delta(\sigma_{{}_{{}_{{}_{{}_{{}_{i}}}}}})$

Ranking *sensitivities to surface VOC emissions* shows the relative importance of each species to MDA8 ozone formation.

Spatially-refined sensitivities allow investigation of efficient emissions control strategies.

Information for Emissions Control Strategy Development

Sensitivities to *absolute emissions* inform which emissions were responsible for formation of the ozone present.

Sensitivities with respect to *emissions scaling factors* convey the extent to which a change in emissions of a species (e.g., NO_x) in a location would impact Denver MDA8.

Comparison of Emissions Influences on Different Cities

Current Progress & Next Steps

- Adjoint forcing functions have been formulated to investigate ozone impacts of oil and gas development adjacent to U.S. urban areas for 2007.
- Sensitivities with respect to emissions scaling factors and absolute emissions have been implemented.
- With CMAQ adjoint, extend the analysis to the entire summer and to other urban areas as well as MDA8 NAAQS exceedances and ozone-based health risks.
- Continue to learn from field campaign results and extrapolate revisions to ozone implications.

Extra Slides

Sample results from other region

Projected Emissions Changes with Price

(McLeod et al., 2014)