SEPA

Quantifying and Accounting for the Effect of
Inter-annual Meteorological Variability in
Dynamic Evaluation Studies

Kristen M. Foley, Christian Hogrefe, Shawn Roselle
Atmospheric Modeling and Analysis Division, NERL, ORD

13th Annual CMAS Conference
Chapel Hill, NC
October 28th 2014



Acknowledgements

¢ EPA OAQPS collaborators: Pat Dolwick, Sharon Philips, Norm Possiel,
Heather Simon, Brian Timin, Ben Wells

® 1990 -2010 Simulations:
— Jia Xing, Chao Wei, Chuen Meei Gan, David Wong, Jon Pleim, Rohit

Mathur
® 2002, 2005 Simulations:

— Meteorology: Rob Gilliam, Lara Reynolds

— Emissions: Allan Beidler, Ryan Cleary,Alison Eyth, Rob Pinder,
George Pouliot,Alexis Zubrow

— Boundary Conditions: Barron Henderson (now at Univ. of FL),
Farhan Akhtar (now at US State Dept.)

— Evaluation:Wyat Appel, Kirk Baker



L2 Dynamic Evaluation of Air Quality
\IEPA Models

Motivation: Air quality models are used to determine the impact of
different emission reductions strategies on ambient concentration levels.
Dynamic evaluation is one component of a thorough model performance
evaluation.

Dynamic Evaluation: Evaluating the model’s ability to predict changes in
air quality given changes in emissions (or meteorology).

EPA’s Nitrogen Oxides State Implementation Plan Call (NO, SIP Call)
provides a valuable retrospective case study.

— The rule was targeted at reducing NO, emissions from EGUs in the
eastern US and was implemented in 2003 and 2004.

Previous studies (e.g. Gilliland et al. 2008; Godowitch et al. 2010;
Napelenok et al. 201 I; Zhou et al. 2013;Kang et al. 2013) have shown a
tendency for CMAQ modeling to underestimate the observed ozone
reductions across this period.



Challenges in Dynamic Evaluation of
Modeled Response to Emission Changes

Challenge: Observed air quality changes over time are driven by both changes in
emissions and meteorological variability, making it difficult to diagnose the
source of model error in dynamic evaluation studies.

Attainment demonstrations are based on observed ozone levels averaged across
multiple years (O; design value) to account for meteorological variability and
better isolate air quality trends due to emission changes.

Modeling for attainment demonstrations is typically done using constant
meteorology inputs. Thus for regulatory modeling applications, we are most
interested in evaluating the model’s ability to capture the impact of changing
emissions on air quality levels.

Two dynamic evaluation approaches proposed here for address confounding
effect of meteorological variability:

— 1990 - 2010 time series of WRF-CMAQ simulations (36km grid, consistent
emissions developed by Xing et al. (2013))

— 2002,2005 CMAQV5.0.1 simulation study with ‘cross’ simulations (12km grid,
‘02’05 NEI based emissions described in Foley et al. (2014))
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o . Dynamic Evaluation using WRF-CMAQ
\IEPA “O. simulations

® Observed and Modeled 2005 - 2002 change in high®* summertime ozone.

Observed 2005 - 2002 change (ppb) Modeled 2005 - 2002 change (ppb)

:
—Q
(

# sites = 262 (subset to AQS sites with data for all 21 years) A -30

“Metric of interest: Average of ten highest daily max 8-hr average ozone (MDAS8 O;) values over June-August.




o Dynamic Evaluation using WRF-CMAQ
\IEPA simulations

® Model underestimates decrease in high summertime ozone in the
NO, SIP call region from 2002 to 2005.

2005 - 2002 Change Top10 MDAS
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Data from n= 262 sites.



QS
o “O. Dynamic Evaluation using WRF-CMAQ
\IEIDA simulations

¢ Model underestimates decrease in ozone from 2002 to 2005 but
overestimates the decrease from 2001 to 2006.

2005 - 2002 Change Top10 MDAS 2006 = 2001 Change Top10 MDAS
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Data from n= 262 sites.




\
o \ Dynamic Evaluation using WRF-CMAQ
\IEPA . simulations

® Observed and Modeled 2006 - 2001 change in high summertime ozone.

30

Observed 2006 - 2001 change (ppb) Modeled 2006 - 2001 change (ppb)
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# sites = 262 (subset to AQS sites with data for all 21 years) B -30




0 Impact of Model Bias on Dynamic
wEPA P 4

Evaluation
o~
* Model performance Bias in average of 10 highest
varies from year to MDA8 03 (ppb)
year. o
® Model overprediction
of high summertime — 0 ©
MDAS8 ozone is a5 S 8 = =
greater in 2005 © ‘\.' (\'1 ‘\l’ C\ll
compared to 2002. o0 ' |
I .
® The opposite is true © - "n !
for the bias in 2006 " !
compared to 2001. : : :
5 - Y
(N |
|
l | |
1995 2000 2005

Year

Average bias across n= 262 sites.



75 Using Multi-year Model Averages in
7 EPA Dynamic Evaluation

o
T | 1yravg . _
* Modeling 3- or 5-year 3 yr avg Bias in average of 10 highest
centered averages can 5 yr avg MDA8 03 (ppb)
stabilize the model bias o _

- we can more
confidently assess the
model’s response to
emission reductions, i.e. o0
results are not as
sensitive to the chosen
starting/ending year.

Bias
- = = ==2006

® Multi-year model
averages are also more
consistent with the
observed design value <
metric used in ozone
attainment

= =)= = === =2002

demonstrations. 19195 20100 2005
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75 Using Multi-year Model Averages in
7 EPA Dynamic Evaluation

Change Top10 MDAS, All Current/Future Difference Pairs

® Use 21 year time g - Modeled
series to look at all i
. T ”» e
possible ‘“base’ year o | 7
and “future” year N Lo
projections separated - b —
by at least 3 years = 5 ' - -
(n=136 pairs). 2 ] B
[ m :
® Modeling 3- or 5-year ;é) » ;
centered averages 5 % -
reduces the variability 305 .
in the observed and Q] i
modeled trends, ' L
providing a more o :
. ™ =
robust dynamic |
evaluation of the
deli Q 1-Year 3-Year 5-Year
modeling system. |
L < - '3 A £
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2 o & 9 & °
Data from n = 262 sites x 136 projection pairs = 35,632 0‘0 00 O‘<> OQ 0"0 00



DA Linking Dynamic Evaluation with

Ll ™ Diagnostic Evaluation

For dynamic evaluation studies, focusing on individual pairs of years
may not fully assess the model’s ability to capture emission-induced
trends due to the confounding effect of meteorological variability.

Longer model simulations offer the opportunity to account for this

variability by using multi-year averages. .

Question remains: Why is model bias
so different from year to year?

10

Misspecified emission trends? @

Bias

More complex problems with
modeling changes in meteorology
and chemistry?

CMAQVvV5.0.Isimulations for 2002 and
2005 are used to separate the change in
ozone due to A emissions vs A meteorology.

Top10_1Year

I
1995

2000 2005

Year
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o \\ Dynamic Evaluation using CMAQv5.0.1
7 EPA \\Q\. ~ Simulations

® Observed and Modeled 2005 - 2002 change in high summertime ozone.

Observed 2005 - 2002 change (ppb) Modeled 2005 - 2002 change (ppb)

=== NOXx SIP Call States
© AQS monitors

# AQS sites =729




o2 FDA Creation of 2002/2005 “Cross™
NZ LI Simulations

¢ 4 Simulations:
— 2 Base: Summer 2002, Summer 2005

— 2 Cross: 2002 emissions with 2005 met NOx e”I"‘ZS‘O”ZSJ(S‘;m 2005 f°tr ‘:alclh ‘";"
o o o are scaled to summer total levels.
2005 emissions with 2002 met .. )
[N} ]1 I
® Emissions for cross simulations: / & ¥
° . . = :.\;I'l |: II|I'
— EGU emissions (with CEM data) based VAN BRIV
on unit specific adjustments to account | /o upE oo 0
for met influences on electricity demand. *-+——————————————

— Mobile emissions: MOVES simulations using designated emission
year and met year.

— Nonroad, industrial point and large marine sectors use emissions
year shifted to match the day of the week of the met year.

— Emissions from fertilizer application, biogenic sources, NOx from
lightning, fires, dust are tied to meteorological year

—  All other sectors have the same inventory for all scenarios except
modified for the day-of-the-week of the met year. 14



Change in high ozone due to changes Change in high ozone due to changes
in EMISSIONS (with 2002 meteorology) in METEOROLOGY (with 2002 emissions)

== 2005 - 2002 total
change in high
summer ozone




< EPA

Meteorology-Adjusted Ozone Trends

r Method developed by Cox and Chu (1996), Camalier et al. (2007) is used by
EPA/OAQPS to provide met-adjusted trends in average ozone.

®  We use this data to evaluate the model-predicted change in ozone due to meteorology.

http://www.epa.gov/airtrends/weather.html

Advanced Search

A7 Index

[EContact Us Eshare

You are here: EPA Home » Air and Radiation » Air Trends » Ozone » Trends in Ozone Adjusted for Weather Conditions

Trends in Ozone Adjusted for Weather Conditions

Variations in weather conditions play an important role in determining ozone concentrations. Ozone is more readily

formed on warm, sunny days when the air is stagnant. Conversely, ozone production is more limited when it is cloudy,
cool, rainy, or windy. EPA uses a statistical model to adjust for the variability in seasonal ozone concentrations due to
weather to provide a more accurate assessment of the underlying trend in ozone caused by emissions.

The graphs below show the national trends in the May - September average of the daily maximum 8-hour ozone
concentrations from 2000 to 2012 in urban and rural locations, respectively. The dotted red lines show the trend in
observed ozone concentrations at selected menitoring sites, while the solid blue lines show the underlying ozone trend at
those sites after removing the effects of weather. The solid blue lines represent ozone levels anticipated under average
weather conditions and serve as a more accurate assessment of the trend in ozone due to changes in precursor
emissions. For example, below average temperatures and above average humidity in the Eastern US in the summer of
2009 contributed to decreased ozone formation, while above average temperatures and below average humidity in the
Central and Eastern US in 2012 contributed to increased ozone formation. The statistical model accounts for these effects
by adjusting the seasonal average ozone trend upward in 2009 and downward in 2012.

National Urban Ozone Trend {112 Locations)
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Abstract

The United States Environmental Protection Agency issues periodic reports that describe air quality trends in the US.
For some pollutants, such as ozone, both observed and meteorologically adjusted trends are displayed. This paper
describes an improved statistical methodology for meteorologically adjusting ozone trends as well as characterizes the
relationships between individual meteorological parameters and ozone. A generalized linear model that accommodates
the nonlinear effects of the meteorological variables was fit to data collected for 39 major eastern US urban areas. Overall,
the model performs very well, yielding R” statistics as high as 0.80. The analysis confirms that ozone is generally increasing
with increasing temperature and decreasing with increasing relative humidity. Examination of the spatial gradients of these
responses show that the effect of temperature on ozone is most pronounced in the north while the opposite is true of
relative humidity. By including HYSPLIT-derived transport wind direction and distance in the model, it is shown that the
largest incremental impact of wind direction on ozone occurs along the periphery of the study domain, which encompasses
major NO, emission sources.

Published by Elsevier Ltd.
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< EPA \‘Tx,\ - 2005-2002 Change in MEAN
A\ Y 4 0. Summertime Ozone

Observed 2005 - 2002 change (ppb) Modeled 2005 - 2002 change (ppb) 10

O AQS monitors
<© CASTNET monitors

O AQS monitors
<& CASTNET monito

# sites = 60
sites 10

®  Met-adjusted observed ozone values for 2002 and 2005 are only available at select
AQS and CASTNet stations and are based on May - September summer averages.
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o) .
‘..,’EPA A Ozone attributed to A Meteorology

¢  Observed and Modeled 2005 - 2002 change in mean summertime ozone due to
changes in meteorology.

Observed 2005 - 2002 change (ppb) Modeled 2005 - 2002 change (ppb) 10

O AQS monitors
¢ CASTNET monitors

O AQS monitors
¢ CASTNET monitol

# sites = 60 ) . -10

®  Predicting too large of an increase in ozone in the northeast.

®  Missing the region of increasing ozone in the midwest. 18



an Diagnosing Errors in Predicting 2005-2002
\"IEPA Change in Summer Mean MDAS8 Ozone

E—

® Model errors in predicting change
in ozone due to meteorology do
not fully explain why model
predictions underestimate the
observed ozone reduction across
these years.

® Next Steps: Quantile regression
statistical model can be used to
estimate met-adjusted observed
ozone trends for different
percentiles (e.g. 90t" percentile
rather than mean O;) to better
evaluate the model predicted
change in ozone due to
meteorology.
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Each boxplot represents data from n= 60 sites.
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Summary

Dynamic evaluation studies that focus on individual pairs of years may
not fully assess the model’s ability to capture emission-induced trends
due to the confounding effect of meteorological variability.

Longer model simulations offer the opportunity to account for this
variability by using multi-year averages.

Model sensitivity simulations can be used to isolate the effects of
emission changes on pollutant concentrations from the effects of
meteorological changes.

Better diagnosing prediction errors identified in a dynamic evaluation
study depends on improving how we use observed data to evaluate
model predicted changes in air quality.

20



