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Dynamic Evaluation of Air Quality 
Models

• Motivation:  Air quality models are used to determine the impact of 
different emission reductions strategies on ambient concentration levels.  
Dynamic evaluation is one component of a thorough model performance 
evaluation.

• Dynamic Evaluation:  Evaluating the model’s ability to predict changes in 
air quality given changes in emissions (or meteorology).

• EPA’s Nitrogen Oxides State Implementation Plan Call (NOx SIP Call) 
provides a valuable retrospective case study.
– The rule was targeted at reducing NOx emissions from EGUs in the 

eastern US and was implemented in 2003 and 2004.

• Previous studies (e.g. Gilliland et al. 2008; Godowitch et al. 2010; 
Napelenok et al. 2011; Zhou et al. 2013;Kang et al. 2013) have shown a 
tendency for CMAQ modeling to underestimate the observed ozone 
reductions across this period.
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Challenges in Dynamic Evaluation of 
Modeled Response to Emission Changes

• Challenge: Observed air quality changes over time are driven by both changes in 
emissions and meteorological variability, making it difficult to diagnose the 
source of model error in dynamic evaluation studies.

• Attainment demonstrations are based on observed ozone levels averaged across 
multiple years (O3 design value) to account for meteorological variability and 
better isolate air quality trends due to emission changes.

• Modeling for attainment demonstrations is typically done using constant 
meteorology inputs.  Thus for regulatory modeling applications, we are most 
interested in evaluating the model’s ability to capture the impact of changing 
emissions on air quality levels.

• Two dynamic evaluation approaches proposed here for address confounding 
effect of meteorological variability:

– 1990 – 2010 time series of WRF-CMAQ simulations (36km grid, consistent 
emissions developed by Xing et al. (2013))

– 2002, 2005 CMAQv5.0.1 simulation study with ‘cross’ simulations (12km grid, 
‘02/’05 NEI based emissions described in Foley et al. (2014))
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Dynamic Evaluation using WRF-CMAQ 
simulations

• Observed and Modeled 2005 – 2002 change in high* summertime ozone.

* Metric of interest:  Average of ten highest daily max 8-hr average ozone (MDA8 O3) values over June-August. 5

Observed 2005 ‐ 2002 change (ppb) Modeled 2005 ‐ 2002 change (ppb)

# sites = 262 (subset to AQS sites with data for all 21 years) 



Dynamic Evaluation using WRF-CMAQ 
simulations

• Model underestimates decrease in high summertime ozone in the 
NOx SIP call region from 2002 to 2005.

6Data from n= 262 sites.



Dynamic Evaluation using WRF-CMAQ 
simulations

• Model underestimates decrease in ozone from 2002 to 2005 but 
overestimates the decrease from 2001 to 2006.

7Data from n= 262 sites.



Dynamic Evaluation using WRF-CMAQ 
simulations

• Observed and Modeled 2006 – 2001 change in high summertime ozone.
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Observed 2006 ‐ 2001 change (ppb) Modeled 2006 ‐ 2001 change (ppb)

# sites = 262 (subset to AQS sites with data for all 21 years) 



Impact of Model Bias on Dynamic 
Evaluation

• Model performance 
varies from year to 
year.

• Model overprediction
of high summertime 
MDA8 ozone is 
greater in 2005 
compared to 2002.

• The opposite is true 
for the bias in 2006 
compared to 2001. 

9

Bias in average of 10 highest MDA8 O3 (ppb)Bias in average of 10 highest 
MDA8 O3 (ppb)

Average bias across n= 262 sites.



Using Multi-year Model Averages in 
Dynamic Evaluation
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1 yr avg
3 yr avg
5 yr avg

Bias in average of 10 highest 
MDA8 O3 (ppb)

• Modeling 3- or 5-year 
centered averages can 
stabilize the model bias 
 we can more 
confidently assess the 
model’s response to 
emission reductions, i.e. 
results are not as 
sensitive to the chosen 
starting/ending year.

• Multi-year model 
averages are also more 
consistent with the 
observed design value 
metric used in ozone 
attainment 
demonstrations.



Using Multi-year Model Averages in 
Dynamic Evaluation
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• Use 21 year time 
series to look at all 
possible “base” year 
and “future” year 
projections separated 
by at least 3 years 
(n=136 pairs).

• Modeling 3- or 5-year 
centered averages 
reduces the variability 
in the observed and 
modeled trends, 
providing a more 
robust dynamic 
evaluation of the 
modeling system.

Data from n = 262 sites x 136 projection pairs = 35,632



Linking Dynamic Evaluation with 
Diagnostic Evaluation

• For dynamic evaluation studies, focusing on individual pairs of years 
may not fully assess the model’s ability to capture emission-induced 
trends due to the confounding effect of meteorological variability.

• Longer model simulations offer the opportunity to account for this 
variability by using multi-year averages.

• Question remains:  Why is model bias                                                          
so different from year to year?

– Misspecified emission trends?
– More complex problems with                                                               

modeling changes in meteorology                                                            
and chemistry?

• CMAQv5.0.1simulations for 2002 and                                                          
2005 are used to separate the change in                                                      
ozone due to ∆ emissions vs ∆ meteorology.
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Dynamic Evaluation using CMAQv5.0.1 
Simulations
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Observed 2005 ‐ 2002 change (ppb) Modeled 2005 ‐ 2002 change (ppb)

• Observed and Modeled 2005 – 2002 change in high summertime ozone.

# AQS sites = 729 



Creation of 2002/2005 “Cross” 
Simulations

• 4 Simulations:   

– 2 Base:  Summer 2002, Summer 2005
– 2 Cross:  2002 emissions with 2005 met

2005 emissions with 2002 met
• Emissions for cross simulations:

– EGU emissions (with CEM data) based                                                          
on unit specific adjustments to account                                                         
for met influences on electricity demand.

– Mobile emissions:  MOVES simulations using designated emission 
year and met year.

– Nonroad, industrial point and large marine sectors use emissions 
year shifted to match the day of the week of the met year.

– Emissions from fertilizer application, biogenic sources, NOx from 
lightning, fires, dust are tied to meteorological year

– All other sectors have the same inventory for all scenarios except 
modified for the day-of-the-week of the met year. 14

NOx emissions from 2005 for each unit 
are scaled to 2002 summer total levels.



Change in high ozone due to changes 
in METEOROLOGY (with 2002 emissions)

=

Change in high ozone due to changes 
in EMISSIONS (with 2002 meteorology)

+

+

15

2005 – 2002 total 
change in high 
summer ozone  

“Interaction” term



Meteorology-Adjusted Ozone Trends

• Method developed by Cox and Chu (1996), Camalier et al. (2007) is used by 
EPA/OAQPS to provide met-adjusted trends in average ozone.

• We use this data to evaluate the model-predicted change in ozone due to meteorology.

16

http://www.epa.gov/airtrends/weather.html



2005-2002 Change in MEAN 
Summertime Ozone

• Met-adjusted observed ozone values for 2002 and 2005 are only available at select 
AQS and CASTNet stations and are based on May – September summer averages.
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Observed 2005 ‐ 2002 change (ppb) Modeled 2005 ‐ 2002 change (ppb)

# sites = 60



• Observed and Modeled 2005 – 2002 change in mean summertime ozone due to 
changes in meteorology.

• Predicting too large of an increase in ozone in the northeast.

• Missing the region of increasing ozone in the midwest.

∆ Ozone attributed to ∆ Meteorology
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Observed 2005 ‐ 2002 change (ppb) Modeled 2005 ‐ 2002 change (ppb)

# sites = 60



• Model errors in predicting change 
in ozone due to meteorology do 
not fully explain why model 
predictions underestimate the 
observed ozone reduction across 
these years.

• Next Steps:  Quantile regression 
statistical model can be used to 
estimate met-adjusted observed 
ozone trends for different 
percentiles (e.g. 90th percentile 
rather than mean O3) to better 
evaluate the model predicted 
change in ozone due to 
meteorology.

Diagnosing Errors in Predicting 2005-2002 
Change in Summer Mean MDA8 Ozone

19Each boxplot represents data from n= 60 sites.



Summary

• Dynamic evaluation studies that focus on individual pairs of years may 
not fully assess the model’s ability to capture emission-induced trends 
due to the confounding effect of meteorological variability.

• Longer model simulations offer the opportunity to account for this 
variability by using multi-year averages.

• Model sensitivity simulations can be used to isolate the effects of 
emission changes on pollutant concentrations from the effects of 
meteorological changes. 

• Better diagnosing prediction errors identified in a dynamic evaluation 
study depends on improving how we use observed data to evaluate 
model predicted changes in air quality.
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