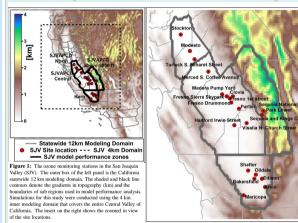
Application of the Segmented "Band-RRF" approach for 8-hour Ozone NAAQS Attainment Demonstration Ajith P. Kaduwela^{1,2}, Sarika Kulkarni¹, Jianjun Chen¹, Jin Lu¹, Daniel Chau¹, Jeremy C. Avise^{1,3}, and John A. DaMassa¹ ¹California Air Resources Board, Sacramento, CA, 95814;


² University of California, Davis, CA, 95616; ³Washington State University, Pullman, WA 99164

Introduction/Background:

The U.S EPA modeling guidance (2007) recommends using the Relative Response Factors (RRF) to project current Design Values (DV) into the future for the NAAQS attainment demonstration of ozone (O₃) and PM_{2.5}. However, it is known that higher O₃ mixing ratios are, in general, more responsive to emission controls of limiting precursors than lower mixing ratios are. The current form of the RRF concept does not allow for this enhanced response to emissions controls at the high end of the simulated/measured O₃ distribution and uses a single RRF value to represent a broad range of O₃ values in the baseline and future years.

We have developed segmented RRF approach termed "Band-RRF" that takes into account the varied model responses for different ranges of O₃ mixing ratios. The Band-RRF approach was previously demonstrated for the now-revoked 1-hour O₃ NAAQS in the San Joaquin Valley (SJV) (Kulkami et. al., 2014). Here, we present the application of the band-RRF concept to the 8-hour O₃ NAAQS. We will also discuss the applicability of the Band-RRF concept to the 24-hour and annual PM_{2.5} NAAQS.

Meteorological and Photochemical Modeling:

1. Meteorology Model: WRFv3.3.1

- Air Quality Model: CMAQv4.7.1 with SAPRC99 chemical mechanism and the AERO5 aerosol module
- 3. Modeling Period: 2007 O₃ Season (May September)
- Biogenic emission inventory: 2007 inventory calculated by MEGAN with California-specific emission factors
- 5. Boundary conditions for the 12 km domain: MOZART global model output
- Two sets of anthropogenic emission inventory: Day-specific 2007 and 2019 inventory for model performance evaluation, calculating relative response factors (RRFs) and future DVs
 CMAQ simulations: Modeling of 2007 and 2019 using the day specific inventory for calculating future DVs

CMAQ Model Performance Statistics for 8-hour O₃

Table 1: Daily maximum 8-hour O_3 (> 60 ppb) performance statistics by modeling sub-regions andentire SJV region for May-September 2007 (See figure 1 for definition of sub-regions)

Parameter	SJVAPCD North	SJVAPCD Central	SJVAPCD above 3000 ft.	Kern	Entire SJV
Number of data points	67	641	221	590	1519
Mean obs (ppb)	67.6	71.2	79.6	74.2	73.4
Mean model (ppb)	77.9	74.3	73.5	73.8	74.2
Mean Bias (ppb)	10.3	3.1	-6.1	-0.4	0.7
Mean Error (ppb)	12.5	7.6	9	7.6	8
Normalized Mean Bias (%)	15.3	4.4	-7.6	-0.5	1
Normalized Mean Error (%)	18.6	10.7	11.3	10.2	10.9
Index of Agreement	0.46	0.69	0.62	0.73	0.68

Note: The statistical metrics used in this table are defined in Simon, H., Baker, K. R., and Phillips, S.: Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012, Atmospheric Environment, 61, 124-139, 2012.

8-hour O₃ Band-RRF Methodology Details:

We now describe the procedure of applying the Band-RRF concept to the 8-hour O_1 standard using the example of the Arvin monitoring site. The time series (Figure 2) of the observed (solid black circles) and simulated "nearby" (i.e., in a grid cell within a 15 km radius of the monitory daily maximum 8-hour O_2 values (black solid line) at Arvin shows good agreement.

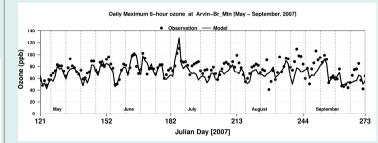


Figure 2: Time-series of observed (black circles), simulated (black line) daily maximum 8-hour O₃ for the simulation period (May-September 2007)

The calculation of future year 8-hr O_3 DV's using the Band-RRF approach involves the following steps as described in Kulkarni et al. (2014)

Calculation of Band-RRFs:

This builds upon the existing RRF approach. The reference-year simulated concentrations above a predetermined threshold (60 ppb for this work) were binned into regular 5 ppb bands from 60-100 ppb. All values above 100 ppb were segregated into a single band. Within each band, an RRF was calculated. The Figure 3 shows the Band-RRF values (y-axis) for each band (x-axis). The decrease in Band-RRF values with increasing band number confirms that the model is more responsive to emissions control at higher values. For the comparison, the "single" RRF for this site is shown as a dashed line parallel to the x-axis.

Representing the RRFs for missing bands of 8-hour O₃ mixing ratios:

To represent the missing bands, we performed a linear regression of available RRFs starting from the 60 ppb bin and only when at least three bands with simulated 8-hour O₃ mixing ratio 2-70 ppb were available (solid black line). We chose this criterion to prevent the lower lessressonsive bands from dominatine the fit.

Terporter bands from bommaning the first set of the se

We have used the RRFs on the regression line for all bins instead of the actual Band-RRF points when available since the regression fit represents the average site specific RRF for that particular mixing ratio range. This approach also reduces the uncertainty caused by a band with very few data points (that are used in the RRF calculation for that particular band) and prevents it from having a disproportional impact on the future DV calculations.

Calculation of Future Year Design Value (DV):

To account for potential reshuffling of the annual 4th highest 8-hour O₃ mixing ratio, larger number of days (10 days per year with a total of 30 days during three years), were projected to the future and subsequently used in the future year DV calculation. The top 10 daily maximum 8-hour O₃ mixing ratios from each of the three years (i.e., 2005-2007) were projected to the future using the corresponding Band-RRFs, re-sorted, and the 4th highest 8-hour O₃ value was calculated at each monitor. The future DV is then calculated as the three-year average of the annual 4th highest 0₃ mixing ratios at each monitor (4th column of Table 2). These DVs are in general lower than the corresponding single-RRF DVs (3th column of Table 2). For instance, at the Arvin monitoring site, the Band-RRF-based future DV of 85.58 ppb is -3 ppb lower than the corresponding single-RRF DV of 88.8 ppb.

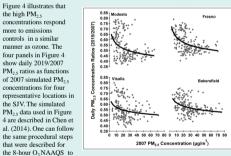

Band-RRF 8-hour O₃ Future DVs

Table 2: 2007 and 2019 O_3 DVs for representative monitoring sites in the San Jaaquin Valley of California. Listed here are the top 10 2007 DV sites for 8-bour O_4

Monitoring Station	DV (ppb) Ambient (2005-2007) ^a	DV (ppb) Single (2007-2019) ^b	DV (ppb) Band (2007-2019) ^b
Arvin	107	88.8	85.5
Sequoia – King's Canyon	103	86.2	84.7
Edison	99	83.2	81.0
Fresno 1st street	98	81.6	78.3
Bakersfield	97	81.3	79.0
Fresno Sierra Skypark	95	79.1	76.1
Sequoia National Park	95	81.0	81.6
Visalia N. Church Street	95	80.4	78.7
Clovis	93	77.1	75.0
Parlier	93	76.7	74.3
Oildale	91	74.5	73.1

^bThe base year 2007 and future year 2019 used for air quality model simulations used in this study.

Extending Band-RRF to PM_{2.5}

calculate the quarter- and component-specific RRFs for the $PM_{2.5}$ species. Figure 4: The daily concentration ratios (2019/2007) for total $PM_{2.5}$. The solid line represents the power form of the regression.

Implications:

Results of photochemical models are used in regulatory applications in a relative sense using Relative Response Factors (RRFs) which represent effects of emissions reductions over a wide range of ozone (Ω_2) values. It is possible to extend the concept of RRFs to account for the fact that higher Ω_3 mixing ratios (both 1-hour and 8-hour) respond more to emissions controls of limiting precursors than do lower Ω_3 mixing ratios. We demonstrate this extended concept, termed Band-RRF, for the 1-hour and 8hour Ω_3 National Ambient Air Quality Standard (NAAQS or standard) in the San Joaquin Valley of California. This extension can also be made applicable to the 24-hour and annual PM₂, standards.

References:

- Chen, J., Lu, J., Avise, J., DaMassa, J., Kleeman, M.J., and Kaduwela, A.P. 2014. Seasonal Modeling of PM₂₅ in California's San Joaquin Valley. *Atmos. Environ.*, 92, 182-190. doi:10.1016/j.atmosenv.2014.04.030
- Gall Control Jamanin Londow-Oca Kallaria, S. Kallawis, J.C., DaMassa, J.A., and Chau, D. 2014. An extended approach to calculate the ozone relative response factors used in the attainment demonstration for the National Ambient Air Quality Standards J. Air & Waste Management Association, 64(10), 1204-1213. doi:10.1080/10962247.2014.936984.
- U.S. Environmental Protection Agency. 2007. Guidance on the use of models and other analyses for demonstrating attainment of air quality goals for ozone, PM_{2,5} and regional haze. EPA-454/B07-002. http://www.ena.gov/scram001/euidance/auide/final-30-mr-th-guidance.pdf
- http://www.epa.gov/scram001/guidance/guide/final-03-pm-th-guidance.pdf U.S. Environmental Protection Agency. 2008. Guideline on the data handling conventions for the 8 hour ozone NAQS. EPA-454R-98-017. http://www.epa.gov/tm/caaa1/memoranda/guidefin.pdf

Acknowledgments:

We thank Karen Magliano, Larry Larsen, Mena Shah of the California Air Resources Board and Scott Bohning of the U.S. EPA Region 9 for providing us with helpful comments.

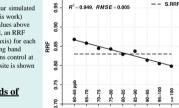


Figure 3: An illustration of the band-RRF procedure for Arvin site using the scatter plot of binned Band-RRF for 8-hour O₃ from 60 to 100 ppb (in 5 ppb increments) vs. the number of bands.

oOzone 8-hour Band RRF at Arvin-Br Mtn

(>60) = 0.875 + 0.008(bandnum)

- B.BBF