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1. INTRODUCTION 
 
     The atmospheric mixing ratio of the 
greenhouse gas methane (CH4) has tripled in the 
last 200 years, having been nearly constant for the 
previous 1⁄2 million (Hansen et al. 2006, IPCC 
2007). Reducing emissions of methane may be an 
important component of an initial strategy for 
avoiding the most severe impacts of global 
warming (Wennberg et al. 2012, Brandt et al. 
2014). Recently, many studies found there were 
clear discrepancies in CH4 emissions inventories 
derived between the “bottom-up” and the “top-
down” methods, which is strangling government 
regulations and further greenhouse gases studies 
in air quality, energy, ecosystem and climate. 
     Current “top-down” atmospheric studies have 
shown that CH4 were underestimated in the United 
States by official inventories (Kort et al. 2008, 
Miller et al. 2013, Brandt et al. 2014), especially 
for south-central US and California. The Inventory 
of greenhouse gases in California has been 
enforced by the legislature to update every five 
years in term of Assembly Bill 32 of 2006, which 
enacted into law as the California Global Warming 
Solutions Act and required statewide greenhouse 
gas emissions not to exceed 1990 levels by the 
year 2020. Therefore, studies have focused on the 
updates in CH4 emission inventories in California, 
such as the South Coast Air Basin (SoCAB) and 
the California’s Central Valley. The SoCAB is a 
primary coastal urban region (Los Angeles 
metropolitan region) contributing CH4 emissions to 
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the statewide (Peischl et al. 2013, Wecht et al. 
2014), which natural gas emissions were found 
should be higher than current official inventories. 
“Top-down” studies have estimated CH4 emissions 
in this area based on a ground-based Fourier 
transform spectrometer (FTS) (Wunch et al. 2009), 
airborne measurements (Perschl et al. 2013), and 
satellite observations (Wecht et al. 2014). All of 
them show a factor of ~two higher emissions than 
the “bottom-up” inventories.   
     The Central Valley is another primary sources 
for CH4 emissions to the statewide (Zhao et al. 
2009, Jeong et al. 2013) such as contributions 
from livestock, rice paddies, and natural gas 
emissions. Sacramento Valley and San Joaquin 
Valley compose the Central Valley. Rice 
cultivation was underestimated by current official 
statewide inventory in the Sacramento Valley 
(Peischl et al. 2012), and due to complex terrains 
inducing complex meteorology regionally and 
locally in the San Joaquin Valley (Zhong et al. 
2004), there were inadequate studies to constrain 
and quantify the surface CH4 emissions in this 
area. 

 
2. METHODS 
 
2.1 Observations and Prior inventory 
 

CalNex campaign (Ryerson et al. 2013) is a 
good opportunity to expand the estimation and 
evaluation of CH4 emission inventories in 
California taking advantages in spatial coverage 
by the NOAA P-3 aircrafts. In context of CalNex 
field intensives, we used six flights measurements 
(May 5, May 8, May 14, May 16, May 19 and June 
20) for the inversed CH4 emissions in the SoCAB 
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and seven flights measurements (May 7, May 11, 
May 12, May 24, June 14, June 16, and June 18) 
for the Central Valley. All of these were flights 
dedicated to characterizing daytime (late morning 
and afternoon after vertical mixing) emissions and 
chemistry in the two areas. Only the observations 
in the boundary layer were used in the inversions 
(Brioude et al. 2013a). Technique details in 
measurements of CH4 on the research aircraft are 
shown in Peischl et al., (2012, 2013). The 
measurements in the SoCAB and the Central 
Valley were not far from the surface sources, and 
hence secondary production of CH4 can be 
neglected. Meanwhile, we did not consider soil 
sink for CH4 lifetime in the atmosphere and 
assume CH4 are passive tracers throughout the 
paper, regardless of the position of the 
measurements relative to the sources (Brioude et 
al. 2013a).  

The 4 × 4 km EPA NEI05 (US Environmental 
Protection Agency, 2010) is used (Brioude et al. 
2011) as the prior emission estimate for the 
optimization of CH4 surface emission inventories. 
In the study, the CH4 posterior estimates are 
compared with the NEI 2005 emission estimates.  

 
2.2 FLEXPART-WRF 

 
To simulate the atmospheric transport at 

mesoscale, we used Weather Research and 
Forecasting (WRF) mesoscale research model as 
input to drive FLEXPART  (FLEXPART-WRF) with 
back-trajectories mode to estimate CH4 emissions.  
We used three different WRF configurations to 
represent three different transport models. For the 
three WRF configurations, the first two have been 
evaluated and did fairly well performances for 
scientific studies in the California area and the 
third one is a new configuration and the 
publication is preparing by Kim et al. (2015). The 
first one we used is from “EM4N” configuration of 
Angevine et al. (2012, 2013) ( “wa”). The second 
one we used is from WRF-Chem 3.1 configuration 
of Kim et al. (2011) (“sw_old”). And the third one 
we used is WRF-Chem 3.4 with nested grids at 12 
and 4 km spacing with 60 vertical levels ( 
“sw_new”). GFS FNL data were used as a global 
model meteorological initial and boundary 
condition. The Noah land surface model and the 
YSU boundary layer scheme were used. 

FLEXPART-WRF version 3.1 (Stohl et al., 
2005, Brioude et al. 2013b) is used to simulate 
atmospheric transport. A total of 10,000 back 
trajectories were released every 30 s or every 100 
m during vertical profiles along the aircraft flight 
tracks. FLEXPART simulated the trajectories over 

24 h to focus on the local transport. Here we 
assume all emissions occur within a surface layer 
of 100 m depth in our FLEXPART back 
trajectories. Here the FLEXPART output had a 
resolution of 8 × 8 km, and the output consists of a 
residence time in the surface layer weighted by 
the atmospheric density. When this output is 
combined with a surface flux emission inventory, 
one can calculate a mixing ratio for each set of 
trajectories along the aircraft flight track. In this 
way, FLEXPART linearizes the transport 
processes between the surface and the aircraft, so 
that an adjoint model of WRF-Chem is 
unnecessary to apply an inverse modeling 
technique (de Foy et al. 2012, Brioude et al. 
2013a, de Foy et al. 2014).  

 
2.3 Inverse modeling 

 
     An inverse modeling approach used here is 
developed based on Brioude et al. (2011). The 
observations in the inverse modeling are CH4 
enhancements, calculated by subtracting the 
modeled background from the flight observations. 
We defined the chemical background of CH4 as 
the lowest mixing ratio found in the atmospheric 
boundary layer (< 2km) upwind of the study areas. 
The enhancements of CH4 are ~10% of 
background concentrations. Uncertainties arising 
from the background definitions were added to the 
measurement uncertainties in the inversion. To 
calculate the best estimates of CH4 surface flux 
emissions, we used a lognormal cost function in a 
4-dimensional (4-D = 3 spatial dimensions plus 
time) least squares method. The advantage of 
using a lognormal cost function is that no negative 
fluxes are found in the posterior.  

We used a Bayesian least squares method to 
invert the observed concentrations and determine 
the surface fluxes. The covariance matrix of the 
observations includes uncertainties from the 
measurements and the background definition for 
each flight and is assumed to be diagonal. The 
observation error is assumed to be uncorrelated. 
The covariance matrices of the observation and 
prior estimate are not perfectly known, and 
therefore uncertainties in the posterior can arise 
from the assumptions made about those 
covariance matrices. To overcome this issue, we 
used the L-shape criterion method to balance the 
errors in both covariance matrices to obtain a 
posterior estimate with the smallest sensitivity to 
the error in either the observation or prior 
covariance matrices (Henze et al., 2009).  

We included 4 time steps in the 4-D inversion: 
one time step between 13:00 and 17:00 UTC that 
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includes the morning rush hour, a time step 
between 17:00 and 21:00 UTC to represent 
midday conditions, a time step between 21:00 
UTC to 01:00 UTC that includes the evening rush 
hour, and a time step between 01:00-13:00 UTC 
representing the nighttime emissions. These time 
steps were chosen based on the overall week 
diurnal cycle in the NEI05 for the SoCAB, and the 
temporal distribution of the aircraft observations 
during CalNex, which occurred between 16:00 
UTC and 01:00 UTC. The values reported in the 
results section are the averages for the two time 
steps between 17:00 UTC and 01:00 UTC where 
we have the strongest confidence in the transport 
models and therefore in the inversion.  

In this study, in order to eliminate the cross-
correlations for low values of emissions and also 
efficiently obtain inversion solutions, we clustered 
spatial grids in study areas using an optimality 
criteria based on the Fisher information matrix.  
Here we used a similar criterion (eq 1) as Bocquet 
el al. (2011) to construct adaptive grids of the 
control space.  

                 𝒥 = Tr(BW!R!!W)                  (1) 
𝒥 is the criterion. B is the covariance matrix of 

the prior emission inventory, R is the covariance 
matrix of the measured observation and the 
simulated concentrations by a model H, and W is 
the derivative of the model H assuming lognormal 
distribution. Using the control space we classified 
them into clusters according to the principle of 
neighbor method, that is if the grid and its four 
neighbors (up, down, left, and right) has similar 
values, they are aggregated as a cluster. In 
addition, for high scores in the control space, we 
keep each grid as a cluster. We reduced the total 
grids in the inverse system by a factor of ~5, and 
saved computation time without loosing 
information contrary to other methods (e.g. 
Brioude et al., 2013a).  
 
3. RESULTS AND DISCUSSION 
 
      The aforementioned methods are applied to 
the SoCAB and Central Valley regions. Results 
from the SoCAB analysis are presented here.  
 
3.1 Emission strength  
 

The inverse system constrained the emissions 
of CH4 (posterior inventory) using the transport 
model to better match the aircraft observations in 
the time series of CH4 mixing ratio. Fig 1 shows 
comparisons between observations and 
simulations in time series of CH4 mixing ratio 
based on six flight measurements. With the same 

transport model, the inventory optimized by this 
study (posterior inventory) simulated higher 
agreements with observations, comparing the 
results with the inventory originated from NEI05 
(prior inventory). The R2 correlation between 
observations and inversion results in time series of 
CH4 mixing ratio for each flight with each transport 
model are estimated as well (not shown here). R2 
correlation was improved using the inverse system 
with value of ~0.7 compared ~0.5 using prior 
inventory. 

Fig 1. The comparison of observations and models in 
time series of the CH4 concentration for flights 0504, 
0508, 0514, 0516, 0519, and 0620, which flew over the 
SoCAB. The shaded areas indicate 1σ variability for 
three WRF configurations.  

The values from the posterior inventory 
calculated by the inverse model are shown in Fig 2 
based on each flight over the SoCAB and each 
transport model, respectively. The median values 
from “wa” transport model show variation range 
between 300 to 600 Gg CH4/yr with uncertainty 
between 9% and 19%, from “sw_old” show 
variation range between 350 to 550 Gg CH4/yr 
with uncertainty between 10% and 15%, and from 
“sw_old” show variation range between 350 to 500 
Gg CH4/yr with uncertainty between 11% and 
15%. The mean values of six flights based on 
each transport model are shown in Fig 2 as well. 
Three transport models show similar median 
values ~420 Gg CH4/yr from the six flights with 
uncertainty of 28%, 18%, and 18% respectively.     
“wa” show relatively higher variations than others.       
       Combining the three transport models, we 
estimated an optimized value of 426±  93 Gg 
CH4/yr for the SoCAB area (Fig 3), in the range of 
previous studies relating to the time period of 
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CalNex campaign (440±100 Gg CH4/yr 
(Wennberg et al. 2012), 410±40 Gg CH4/yr 
(Peischl et al. 2013), 280-390 Gg CH4/yr (Santoni 
et al. 2014), and 420±80 Gg CH4/yr (Wecht et al. 
2014)). Here we estimated that this robust 
evaluation is higher by factor of ~2 than NEI 2005 
(230 Gg CH4/yr) with 15 % uncertainty. 

 

Fig 2. Daytime averaged annual total emissions of CH4 
(Gg/yr) derived based on each of flights flew over the 
SoCAB area, and each transport model. The mean 
values are calculated based on each transport model as 
well.  

 
Fig 3. Previous studies for total emissions of CH4 in the 
SoCAB relating to the CalNex campaign, the estimates 
from this study, and the value form prior inventory.  
 
3.2 Spatial Distribution 
 
     The surface emissions of CO have been 
improved by Brioude et al. (2013) in the similar 
inverse system. Ratios of CH4 and CO from six 
flights (over the SoCAB) are shown in Fig 4, 
including observations, estimates from prior 
inventories of CH4 and CO, and estimates from 
posterior inventories of CH4 and CO. Ratios of 
CH4 and CO based on prior inventories show 
underestimates compared with observations. The 
distinct improvements are shown in ratios of CH4 
and CO based on the posterior inventories of this 
study, which implies the improvement of CH4 in 
spatial distributions from the posterior inventory. 
    Fig 5 displays the spatial distribution of four 
main source types attributed to emissions of CH4 
in the SoCAB area with 8km spatial resolution 

from NEI 2005. The four sources include dairy, 
landfill, wells, and point sources. Dairy CH4 
 

 
 
 

 

 

Fig 4. The comparison of measurements and 
simulations in the ratio between CH4 and CO for cases 
of flights 0504, 0508, 0514, 0516, 0519, and 0620.  
Here results include three WRF configurations. The 
dash lines represent estimates in one standard 
deviation.  

 
emissions predominate in the eastern basin of the 
SoCAB, and CH4 emissions of well, landfill, and 
point sources dominate in the western basin. It is 
clear that the emission strength of point sources is 
lower than dairy and landfill sources. CH4 
emissions from Landfill are also distributed in the 
eastern basin. We check the overlap grids 
between the four sources, and found the number 
of overlap grids between the dairy sources and 
other three sources are small, and other sources 
in these overlap grids show very small emission 
values (~ 2 order smaller) compared with others in 
non-overlap grids. Therefore, we consider dairy 
sources total contributed the CH4 emissions in the 
grids in Fig 5 (first panel). However, we cannot 
differentiate the overlap grids between well, 
landfill, and point sources here. Therefore, we 
estimated CH4 emissions of dairy source between 
the prior and posterior inventories, and we 
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estimated total CH4 emissions of three sources 
together (well, landfill, and point sources) between 
the prior and posterior inventories. We assume the 
spatial distributions of source types are correct.   
     Fig 6 shows spatial distribution of CH4 and CO 
emissions in prior and posterior inventories, and 
also the ratio of CH4 and CO in spatial 
distributions. The comparisons of ratios of CH4 
and CO calculated from prior inventories (NEI05) 
and ratios of CH4 and CO calculated from this 
study clear show differences in spatial 
distributions. Consistent with results of CO 
posterior inventory in Brioude et al. (2013), we 
Found in Fig 6 (f), ratios of CH4 and CO 
emphasized the enhancements in the landfill, 
wells and point sources, especially for the western 
basin. 

 

 
 
Fig 5. CH4 emissions by source types from NEI05 for 
the SoCAB domain, including four sectors: diary, landfill, 
well, and point source of CH4. The units for diary, 
landfill, and point sources are Gg CH4/yr per grid cell, 
and the unit of well source is #well per grid cell. 

Fig 6. Surface CH4 emissions in prior inventory (a) and 
posterior inventory (b), surface CO emissions in prior 
inventory (c) and posterior inventory (d), with unit: mole 
m-2 s-1 , and the ratios of CH4 and CO in prior inventory 
(e) and posterior inventory (f).  

 
4. CONCLUSION 
 

 Here we applied an inverse modeling 
technique using three mesoscale transport models 
and in situ measurements from the NOAA P-3 
aircraft during the 2010 CalNex campaign over the 
SoCAB to evaluate and improve the NEI 2005 
emission inventory of CH4. We based on the 
receptor-oriented framework to provide robust 
validation the NEI05 emission inventory of CH4. 
Aggregating grids to clusters is new to our inverse 
modeling technique. The inversions were applied 
to individual flights’ data with three different 
transport models, respectively. The uncertainty of 
the average flux in the SoCAB from these single 
flight inversions was about 15 % for CH4 
emissions. Compared to NEI 2005, the daytime 
CH4 posterior estimates were higher by factor of 
two in the SoCAB, which is in agreement with a 
recent study based on observations. The posterior 
inventory using the mesoscale inverse technique 
here also provide more details of the regional 
spatial distribution in CH4 emissions which 
supplement and enhance our understanding in 
statewide emissions of CH4.  

Therefore, we use the inverse model to study 
emissions of CH4 in the Central Valley. We found 
there was three times higher in our top-down 
method in total CH4 emissions for the Central 
Valley than values from EPA NEI 2005. We also 
estimate spatial distributions of CH4 surface fluxes 
and discuss the significant role of dairy, rice and 
well sources that contributed to the discrepancies 
between our top-down calculations and bottom-up 
inventories. 
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