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1. INTRODUCTION 
 
This presentation reports on the first major 

thread parallel enhancements for the SMOKE 3.1 
model as developed by the U.S. EPA [CMAS]. 
These modifications replaced the serial version of 
the MOVESMRG Fortran procedure with a thread 
parallel version. This procedure merges emission 
factors with activity data to create the on-road 
mobile emissions input required by CMAQ. It is 
one of the most time-consuming components of 
SMOKE and therefore it is of interest to reduce the 
wall clock time expended there. 

The new version (hereafter SMOKE-HC) 
offers performance improvement over the U.S. 
EPA serial release (hereafter SMOKE-EPA). 
MOVESMRG contains algorithms that assume 
serial processing in a time step loop (on T) in one 
hour increments for multiple days. This is 
encapsulated in a loop over reference counties 
and contains voluminous I/O and memory 
intensive processing, mixed with branching logic 
and arithmetic operations. In the parallel version of 
MOVESMRG performance limiting procedures 
were hoisted out of the parallel region and 
preprocessed in a separate serial loop on T 
followed by a second parallel loop on the time 
step. The parallel layers developed at HiPERiSM 
added thread-level parallelism but found negligible 
scope for instruction-level parallelism (at the 
vector loop level) in the SMOKE algorithms. The 
parallel version of SMOKE was tested with the 
Portland Group® compiler [PGI] and results are 
reported for multi-core platforms from the Intel 
Corporation® (INTEL) and Advanced Micro 
Devices® (AMD). The next section details the 
HiPERiSM test bed and is followed by a 
description of the parallel modifications and 
results. 

 
2. TEST BED ENVIRONMENT 

 
2.1 Hardware 
 

The hardware systems chosen were the 
platforms at HiPERiSM Consulting, LLC, shown in 
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Table 2.1. The two platforms shown in the table 
(INTEL and AMD) have a total of 8 and 48 cores, 
respectively. Each of these two cluster nodes was 
used separately for thread-parallel OpenMP 
execution as discussed below. 
 
Table 2.1. Platforms at HiPERiSM Consulting, LLC 

Platform  AMD  INTEL 

Processor AMD™ Opteron 
6176SE 

Intel™ IA32 
W5590 

Peak Gflops (SP/DP) 110.4 / 55.2 106.6 / 53.3 
Power consumption 105 Watts 130 Watts 
Cores per processor 12 4 

Power consumption per core 8.75 Watts 32.5 Watts 
Processor count 4 2 
Total core count 48 8 

Clock 2.3GHz 3.33GHz 
Band-width 42.7 GB/sec 64.0 GB/sec 

Bus speed 1333 MHz  1333 MHz 

L1 cache 64KB 64KB 
L2 cache 512 KB(1) 256MB 

L3 cache(2) 12MB 8MB 
Total memory 128GB 96GB 

(1) Per core, (2) Per socket 
 

The total memory shown in Table 2.1 does not 
represent the upper limits available with this 
generation of hardware but for now is configured 
for optimal performance. 
 
2.2 Compilers 
 

Compilers available for the platforms in Table 
2.1 include those from Intel (12.1), Portland 
(12.5/13.4) and Absoft (11.5) on 64-bit Linux 
operating systems and hardware. However, for 
this report, the HiPERiSM Consulting, LLC, 
version of SMOKE-HC with multi-threaded 
parallelism was compiled and executed only with 
the Portland compiler.  Results for other compilers 
will follow at a later date. 

 
3. EPISODE STUDIED 
 

For all SMOKE results reported here the 
model episode selected used data provided by the 
U.S. EPA [BAEK]. This episode includes several 
scientific models but only the rate per distance one 
was used throughout this report because this had 
the largest fraction of wall clock time expended in 
MOVESMRG. This model was compiled and 
executed for five cases with increasing number of 
time steps (T) in each, corresponding to T=25, 43, 
73, 97, and 121, respectively. In each case the 
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number of reference counties was fixed at 146, 
and the number of species is fixed at 142. The 
number of sources depends on the county and 
ranges up to 447696. The number of grid cells 
depends on the source and varied up to ~35. 
 
4. ANALYSIS OF MOVESMRG CODE  

 
4.1 Background 
 
The MOVESMRG model in SMOKE consumes the 
largest fraction of time in the case of the rate per 
distance simulation.  This was used in the cases 
reported here and also in those that come with the 
SMOKE 3.1 download [CMAS]. A profile and 
examination of the loop structure was undertaken 
to localize the workload distribution within 
MOVESMRG. This loop structure is shown 
schematically in Table 4.1 and a profile showed 
that this is where the most execution time is 
expended within MOVESMRG. 
 
Table 4.1. Fortran nested loop structure in movesmrg. 
TARGET LOOP INDEX 
inventory counties DO I = 1, NREFC                      

… [ I/O PERFORMED] 
time steps DO T = 1, NSTEPS 
sources in inventory 
county 

DO S = 1, 
NREFSRCS(I) 

grid cells for source DO NG = 1, 
NSRCCELLS(SRC) 

pollutant-species combos DO V = 1, NSMATV 
pollutant-species combos END DO 
grid cells for source END DO 
sources in inventory 
county 

END DO 

time steps END DO 
inventory counties … [ I/O PERFORMED] 

END DO 

 
4.2 Parallelization strategies  
 

With a view to thread parallelism potential the 
nested loop structure in MOVESMRG was 
examined starting from the innermost loops. 

The grid and species loops (NG,V) are 
candidates for parallel implementations, but in the 
current form they contain both serial code 
constructs and subscript references that are 
indirect, i.e. do not directly depend on the 
respective loop index NG or V. As a result vector 
processing is inhibited. Furthermore, inspection of 
the arithmetic operations shows that they are not 
numerous and most use variables that do not 
dependent on loop indexes. Also these loops 
contain multiple logical branches. As a result the 
assessment was that the cost of thread 
synchronization may overcome any gains in 

parallel performance scaling at this level. This 
would result in a parallel implementation at the NG 
or V loop level that takes longer to execute than 
the serial code. An added factor is that for serial 
code, current compiler technology would 
implement scalar optimizations on the DO NG and 
DO V loops that are more efficient than any gains 
from a parallel implementation. This assessment 
was confirmed in the parallel performance 
observed with a coding prototype. 

At the next higher loop level the source loop 
(S) is a good candidate for a parallel 
implementation, but requires the modification and 
removal of serial algorithms and potential 
synchronization requirements in the contained 
loops for NG and V variables. One issue in the DO 
S loop is that this loop maps the S index into a 
source index, SRC, and NG into a CELL index. In 
addition species are also indirectly referenced. A 
second parallel prototype showed low efficiency.  

Further up the loop nest chain is the time step 
loop on T.  This loop is inherently serial in the 
original SMOKE-EPA version, and could be 
avoided as a parallelization target because the 
best target for parallelization is the outermost loop. 
However, the county loop has the problem that it 
includes procedure calls to perform file reads and 
writes with lengthy formatted I/O operations and 
storage into memory. While the opportunity for 
parallelism exists, it would require careful 
synchronization of threads to avoid I/O collisions. 
As a result the level of effort for a parallel 
implementation at the county loop (I) would be 
significantly higher than the effort involved on 
parallel implementation of contained loops.  

The outcome of this analysis of parallel 
strategies, is that the time loop on T was selected 
as the thread parallel index. As a result, to create 
a parallel MOVESMRG version, significant code 
modifications were required to: 
a) remove some contained procedure calls that 

invoke I/O, 
b) replace inherently sequential algorithms that 

require serial processing, and 
c) classify variables into shared and private 

groups in the parallel region. 
The parallel implementation hoists I/O 

operations into a separate serial loop on T and 
stores required values in memory as a 
preprocessing step before a subsequent parallel 
loop on T contained in a thread parallel region. In 
a parallel task scheduling algorithm this loop on T 
performs arithmetic and logical branch operations 
with separate threads assigned to separate T 
values.  Since parallel processing on the T index is 
in random order, results computed inside the 
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parallel region need to be stored to memory (in 
arrays indexed on T) for retrieval outside the 
parallel region for I/O loop operations serial in T.  
 
4.3 I/O and memory usage 
 

The I/O and memory usage in MOVESMRG 
needs some clarification.  Already in the serial 
SMOKE-EPA version, memory usage is intensive 
and scales with the number of time steps T. This is 
the case despite some options that attempt to 
optimize memory usage. For SMOKE-HC the 
expected gain in wall clock time comes at the cost 
of an increase in memory demand that escalates 
with the number of time steps T. Table 4.2 
compares the memory requirements for the serial 
and parallel versions of SMOKE. The increase in 
memory usage for the HiPERiSM parallel version 
is not a major sacrifice since current market cost 
of memory is approximately $8.50 per gigabyte 
(i.e. the 96GB on the INTEL platform cost $816). 
This represents 26% of the cost per gigabyte 
approximately 4 years earlier. 
 
Table 4.2. Memory usage in MOVESMRG 

Case and 
number of 

time steps T 
(hours) 

Memory usage by MOVESMRG 
version (Gigabytes) 

EPA HiPERiSM 
25 3.0 6.7 
49 3.6 10 
73 4.3 14 
97 4.9 18 
121 5.5 22 

 
4.4 Status of parallel code 
 

The thread parallel strategy described above 
can only succeed if there is sufficient coarse grain 
parallel work for each thread. However, because 
of the diminishing speed up observed at higher 
thread counts, it is clear that the amount of work 
per thread is reducing. In addition, not all counties 
have the same amount of work because of widely 
differing ranges of the innermost loops in Table 
4.1.  The example of Fig. 4.1 shows that only 28% 
of the 146 counties experience a parallel speed up 
in the range 2 to 5.5 with 4 or more threads. It is 
enhanced parallel performance in these counties 
that contributes to the over-all speed up of the 
entire simulation.  

These issues continue to be investigated and 
results presented here are preliminary, but 
sufficient to demonstrate proof-of concept.  
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Fig 4.1: Results of a test case (T=97) with the parallel 
version of SMOKE-HC on the INTEL node for the 
number of threads in the legend. This shows parallel 
thread scaling for each of 146 counties sorted (left to 
right) on increasing time for one thread. 
 
5. PARALLEL PERFORMANCE RESULTS 
 
5.1 Test case runs 
 

Two performance metrics are introduced to 
assess thread parallel performance in the 
SMOKE-HC modified code: 

(a) Speedup is the gain in runtime over the 
standard U.S. EPA runtime, 

(b) Scaling is the gain in runtime for thread 
counts larger than 1, relative to the result 
for a single thread. 

For the five cases of Table 4.2, and their 
corresponding time step count T, Table 5.1 shows 
the runtimes in hours for the serial version of 
SMOKE and the corresponding parallel runtimes 
for increments in the thread count. The number of 
cores on the INTEL platform of Table 2.1 is limited 
to 8, but that of the AMD platform is considerably 
larger. Platform comparison shows an EPA serial 
version wall clock time smaller on INTEL than on 
the AMD node. Noteworthy is the 2.5%-7% speed 
up of the single thread parallel version over the 
serial EPA code. As the thread count increases for 
the parallel version, the successive improvement 
in wall clock time diminishes. Of special 
significance is the scaling result for the T=121 
case. On the AMD platform, with 24 threads, the 
speedup is 3.2 times faster than the serial 
(SMOKE-EPA) time. 

For each of the five cases of Table 5.1, Fig. 
5.1 and Fig. 5.2, show wall clock time results on 
INTEL and AMD nodes for the respective number 
of threads listed. Correspondingly, Table 5.2, Fig. 
5.3 and Fig. 5.4, show the thread scaling results 
for parallel performance. 
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Table 5.1. Portland compiler wall clock times (in hours) 
for serial U.S. EPA (SMOKE-EPA) and parallel 
(SMOKE-HC) versions of SMOKE on two platforms. 

Serial 
and 

parallel 
thread 
count 

P
latform

 

Case and number of time steps T 

25 49 73 97 121 

serial 

IN
TE

L 

1.21 1.71 2.16 2.65 3.14 
1 1.18 1.59 2.03 2.48 2.95 
2 1.04 1.28 1.52 1.75 2.00 
4 1.00 1.12 1.30 1.45 1.60 
6 0.95 1.05 1.18 1.32 1.41 
8 0.91 1.02 1.12 1.23 1.34 

serial 

A
M

D
 

2.36 3.42 4.46 5.39 6.40 
1 2.27 3.20 4.16 5.07 5.97 
2 1.82 2.33 2.84 3.35 3.86 
4 1.64 1.96 2.24 2.55 2.86 
6 1.63 1.86 2.10 2.39 2.60 
8 1.61 1.79 2.03 2.29 2.55 

10 1.54 1.74 1.90 2.07 2.25 
12 1.50 1.68 1.83 1.99 2.16 
16 1.46 1.62 1.78 1.93 2.04 
20 1.50 1.63 1.78 1.90 2.17 
24 1.45 1.59 1.73 1.87 1.98 
 

Table 5.2. Thread scaling with the Portland compiler for 
the SMOKE-HC version of SMOKE on two platforms. 

Parallel 
thread 
count 

P
latform

 

Case and number of time steps T 

25 49 73 97 121 

2 IN
TE

L 

1.13 1.24 1.34 1.42 1.47 
4 1.18 1.42 1.57 1.71 1.85 
6 1.23 1.52 1.73 1.88 2.09 
8 1.29 1.56 1.82 2.02 2.20 
2 

A
M

D
 

1.24 1.37 1.46 1.51 1.55 
4 1.38 1.63 1.85 1.98 2.09 
6 1.39 1.72 1.98 2.12 2.30 
8 1.41 1.79 2.04 2.21 2.35 

10 1.47 1.84 2.19 2.45 2.66 
12 1.51 1.91 2.28 2.55 2.76 
16 1.55 1.98 2.34 2.63 2.93 
20 1.51 1.97 2.34 2.66 2.75 
24 1.56 2.01 2.41 2.72 3.02 
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Fig 5.1: Wall clock time (hours) for five test cases with 
the parallel version of SMOKE-HC on the INTEL node. 
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Fig 5.2: Wall clock time (hours) for five test cases with 
the parallel version of SMOKE-HC on the AMD node. 
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Fig 5.3: Thread scaling for five test cases with the parallel 
version of SMOKE-HC on the INTEL node for the thread 
counts in the legend. The 1 thread result is unity. 
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Fig 5.4: Thread scaling for five test cases with the 
parallel version of SMOKE-HC on the AMD node for the 
thread counts in the legend. The 1 thread result is unity. 
 
5.2 Trend line extrapolations 
 

Trends in values for the parallel times in Table 
5.1, Fig. 5.1, and Fig. 5.2, may be accurately fitted 
with linear trend lines as a function of T. These are 
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then used to establish expected runtimes for much 
larger time step T ranges. These extrapolations 
are shown in Figs. 5.5 and 5.6, for INTEL and 
AMD platforms, respectively. The thread counts 
are designated in the legend. 
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Fig 5.5: Extrapolation of Wall clock time (hours) with the 
parallel version of SMOKE-HC on the INTEL node. 
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Fig 5.6 Extrapolation of Wall clock time (hours) with the 
parallel version of SMOKE-HC on the AMD node. 
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Fig 5.7: Extrapolation of thread scaling with the parallel 
version of SMOKE-HC on the INTEL node. 
 

Corresponding extrapolations for thread 
scaling, as functions of time step count T, are 

shown in Figs. 5.7 and 5.8, for INTEL and AMD 
platforms, respectively, for the thread counts 
designated in the legend. Trend lines for these 
were obtained from fits to the results of Figs. 5.3 
and 5.4 with a simple power law. 
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Fig 5.8 Extrapolation of  thread scaling with the parallel 
version of SMOKE-HC on the AMD node. 
 
6. SMOKE workload throughput 
 
6.1 Comparing hardware platforms 

 
There are significant differences in wall clock 

time and thread scaling between AMD and INTEL 
platforms for the same model simulation of an 
individual case at each time step count T. 
However, with more threads better performance is 
expected. One example of this is shown in Fig. 
6.1. The wall clock time extrapolation as a function 
of time step (T) is for two platforms: INTEL with 4 
threads and AMD with 12 threads. These used the 
trend line extrapolations introduced in the previous 
section.  
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Fig 6.1: Extrapolated wall clock time (hours) versus time 
step (T) for the parallel version of SMOKE-HC on INTEL 
and AMD nodes with 4 and 12 threads, respectively. 
The ratio of times (AMD / INTEL) at each T is also 
shown. 



Presented at the 12th Annual CMAS Conference, Chapel Hill, NC, October 28-30, 2013 

6 

The ratio (AMD / INTEL) of the wall clock 
times at each T value is also shown in Fig. 6.1 and 
demonstrates a reduction as the value of T 
increases. Actual wall clock times for cases with T 
in the extrapolated range (beyond 121) may differ. 
 
6.2 Workload throughput metric 
 

It is of interest to measure performance for 
workload throughput. In the case of SMOKE the 
workload is concurrent individual parallel runs on 
either platform, where each has a wide range in 
time steps (T). To measure performance of 
workload throughput a suitable metric is: 

the number of simulation weeks completed 
per wall clock hour. 
For each wall clock hour this counts how many 

multiples of 7 x 24 (= 168 hours) steps in T 
complete. 
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Fig 6.2: Workload throughput metric with the parallel 
version of SMOKE-HC on the INTEL node as a function 
of the thread count and number of simulation time steps. 
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Fig 6.3: Workload throughput metric for the parallel 
version of SMOKE-HC on the AMD node as a function 
of the thread count and number of simulation time steps. 
 

Using the extrapolations found in Section 5.2 a 
simple model populates either platform with as 

many concurrent cases allowable up to the 
available limits of memory and core count. These 
population samples are examined to see which 
maximize the workload throughput metric defined 
above. Figs. 6.2 and 6.3, respectively, present 
results of the workload metric for INTEL and AMD 
platforms. For example, on the INTEL node the 
best metric value of 1.2 is for 3 x 2-thread runs 
with T=169 each, or 1.3 for 2 x 4-thread runs at T= 
265. The AMD workload equals the INTEL T=169 
metric value with 3 x 12-thread runs and exceeds 
it at 1.37 for 3 x 12-thread runs with T=217 each. 
Clearly, although the INTEL platform is the 
speedier of the two, there is more opportunity for 
increased SMOKE workload throughput on the 
AMD node. 
 
7. CONCLUSIONS 
 

This analysis compared runtime of SMOKE in 
a new OpenMP thread parallel version with the 
U.S. EPA release. The results indicated that with 
121 time steps the multi-threaded parallel speedup 
over the EPA version was 2.3 with 8 parallel 
threads (INTEL node), and 3.2 with 24 threads 
(AMD node), rerspectively. However, the AMD 
platform offered the best workload throughput 
capacity for multiple runs with longer time step 
ranges because of a higher core count. 

Further opportunities remain for thread 
parallelism in other parts of the SMOKE model 
outside of MOVESMRG and work in this direction 
continues at HiPERiSM Consulting, LLC. The new 
version of SMOKE-HC offers layers of parallelism 
not available in the standard U.S. EPA release 
and may be ported to hardware and software that 
supports multiple parallel threads. 
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