
Presented at the 12th Annual CMAS Conference, Chapel Hill, NC, October 28-30, 2013

1

A NEW PARALLEL VERSION OF MOVESMRG FOR SMOKE

George Delic*
HiPERiSM Consulting, LLC, P.O. Box 569, Chapel Hill, NC 27514, USA

1. INTRODUCTION

This presentation reports on the first major

thread parallel enhancements for the SMOKE 3.1
model as developed by the U.S. EPA [CMAS].
These modifications replaced the serial version of
the MOVESMRG Fortran procedure with a thread
parallel version. This procedure merges emission
factors with activity data to create the on-road
mobile emissions input required by CMAQ. It is
one of the most time-consuming components of
SMOKE and therefore it is of interest to reduce the
wall clock time expended there.

The new version (hereafter SMOKE-HC)
offers performance improvement over the U.S.
EPA serial release (hereafter SMOKE-EPA).
MOVESMRG contains algorithms that assume
serial processing in a time step loop (on T) in one
hour increments for multiple days. This is
encapsulated in a loop over reference counties
and contains voluminous I/O and memory
intensive processing, mixed with branching logic
and arithmetic operations. In the parallel version of
MOVESMRG performance limiting procedures
were hoisted out of the parallel region and
preprocessed in a separate serial loop on T
followed by a second parallel loop on the time
step. The parallel layers developed at HiPERiSM
added thread-level parallelism but found negligible
scope for instruction-level parallelism (at the
vector loop level) in the SMOKE algorithms. The
parallel version of SMOKE was tested with the
Portland Group® compiler [PGI] and results are
reported for multi-core platforms from the Intel
Corporation® (INTEL) and Advanced Micro
Devices® (AMD). The next section details the
HiPERiSM test bed and is followed by a
description of the parallel modifications and
results.

2. TEST BED ENVIRONMENT

2.1 Hardware

The hardware systems chosen were the
platforms at HiPERiSM Consulting, LLC, shown in

* Corresponding author: George Delic,
george@hiperism.com.

Table 2.1. The two platforms shown in the table
(INTEL and AMD) have a total of 8 and 48 cores,
respectively. Each of these two cluster nodes was
used separately for thread-parallel OpenMP
execution as discussed below.

Table 2.1. Platforms at HiPERiSM Consulting, LLC

Platform AMD INTEL

Processor AMD™ Opteron
6176SE

Intel™ IA32
W5590

Peak Gflops (SP/DP) 110.4 / 55.2 106.6 / 53.3
Power consumption 105 Watts 130 Watts
Cores per processor 12 4

Power consumption per core 8.75 Watts 32.5 Watts
Processor count 4 2
Total core count 48 8

Clock 2.3GHz 3.33GHz
Band-width 42.7 GB/sec 64.0 GB/sec

Bus speed 1333 MHz 1333 MHz

L1 cache 64KB 64KB
L2 cache 512 KB(1) 256MB

L3 cache(2) 12MB 8MB
Total memory 128GB 96GB

(1) Per core, (2) Per socket

The total memory shown in Table 2.1 does not
represent the upper limits available with this
generation of hardware but for now is configured
for optimal performance.

2.2 Compilers

Compilers available for the platforms in Table
2.1 include those from Intel (12.1), Portland
(12.5/13.4) and Absoft (11.5) on 64-bit Linux
operating systems and hardware. However, for
this report, the HiPERiSM Consulting, LLC,
version of SMOKE-HC with multi-threaded
parallelism was compiled and executed only with
the Portland compiler. Results for other compilers
will follow at a later date.

3. EPISODE STUDIED

For all SMOKE results reported here the
model episode selected used data provided by the
U.S. EPA [BAEK]. This episode includes several
scientific models but only the rate per distance one
was used throughout this report because this had
the largest fraction of wall clock time expended in
MOVESMRG. This model was compiled and
executed for five cases with increasing number of
time steps (T) in each, corresponding to T=25, 43,
73, 97, and 121, respectively. In each case the

Presented at the 12th Annual CMAS Conference, Chapel Hill, NC, October 28-30, 2013

2

number of reference counties was fixed at 146,
and the number of species is fixed at 142. The
number of sources depends on the county and
ranges up to 447696. The number of grid cells
depends on the source and varied up to ~35.

4. ANALYSIS OF MOVESMRG CODE

4.1 Background

The MOVESMRG model in SMOKE consumes the
largest fraction of time in the case of the rate per
distance simulation. This was used in the cases
reported here and also in those that come with the
SMOKE 3.1 download [CMAS]. A profile and
examination of the loop structure was undertaken
to localize the workload distribution within
MOVESMRG. This loop structure is shown
schematically in Table 4.1 and a profile showed
that this is where the most execution time is
expended within MOVESMRG.

Table 4.1. Fortran nested loop structure in movesmrg.
TARGET LOOP INDEX
inventory counties DO I = 1, NREFC

… [I/O PERFORMED]
time steps DO T = 1, NSTEPS
sources in inventory
county

DO S = 1,
NREFSRCS(I)

grid cells for source DO NG = 1,
NSRCCELLS(SRC)

pollutant-species combos DO V = 1, NSMATV
pollutant-species combos END DO
grid cells for source END DO
sources in inventory
county

END DO

time steps END DO
inventory counties … [I/O PERFORMED]

END DO

4.2 Parallelization strategies

With a view to thread parallelism potential the
nested loop structure in MOVESMRG was
examined starting from the innermost loops.

The grid and species loops (NG,V) are
candidates for parallel implementations, but in the
current form they contain both serial code
constructs and subscript references that are
indirect, i.e. do not directly depend on the
respective loop index NG or V. As a result vector
processing is inhibited. Furthermore, inspection of
the arithmetic operations shows that they are not
numerous and most use variables that do not
dependent on loop indexes. Also these loops
contain multiple logical branches. As a result the
assessment was that the cost of thread
synchronization may overcome any gains in

parallel performance scaling at this level. This
would result in a parallel implementation at the NG
or V loop level that takes longer to execute than
the serial code. An added factor is that for serial
code, current compiler technology would
implement scalar optimizations on the DO NG and
DO V loops that are more efficient than any gains
from a parallel implementation. This assessment
was confirmed in the parallel performance
observed with a coding prototype.

At the next higher loop level the source loop
(S) is a good candidate for a parallel
implementation, but requires the modification and
removal of serial algorithms and potential
synchronization requirements in the contained
loops for NG and V variables. One issue in the DO
S loop is that this loop maps the S index into a
source index, SRC, and NG into a CELL index. In
addition species are also indirectly referenced. A
second parallel prototype showed low efficiency.

Further up the loop nest chain is the time step
loop on T. This loop is inherently serial in the
original SMOKE-EPA version, and could be
avoided as a parallelization target because the
best target for parallelization is the outermost loop.
However, the county loop has the problem that it
includes procedure calls to perform file reads and
writes with lengthy formatted I/O operations and
storage into memory. While the opportunity for
parallelism exists, it would require careful
synchronization of threads to avoid I/O collisions.
As a result the level of effort for a parallel
implementation at the county loop (I) would be
significantly higher than the effort involved on
parallel implementation of contained loops.

The outcome of this analysis of parallel
strategies, is that the time loop on T was selected
as the thread parallel index. As a result, to create
a parallel MOVESMRG version, significant code
modifications were required to:
a) remove some contained procedure calls that

invoke I/O,
b) replace inherently sequential algorithms that

require serial processing, and
c) classify variables into shared and private

groups in the parallel region.
The parallel implementation hoists I/O

operations into a separate serial loop on T and
stores required values in memory as a
preprocessing step before a subsequent parallel
loop on T contained in a thread parallel region. In
a parallel task scheduling algorithm this loop on T
performs arithmetic and logical branch operations
with separate threads assigned to separate T
values. Since parallel processing on the T index is
in random order, results computed inside the

Presented at the 12th Annual CMAS Conference, Chapel Hill, NC, October 28-30, 2013

3

parallel region need to be stored to memory (in
arrays indexed on T) for retrieval outside the
parallel region for I/O loop operations serial in T.

4.3 I/O and memory usage

The I/O and memory usage in MOVESMRG
needs some clarification. Already in the serial
SMOKE-EPA version, memory usage is intensive
and scales with the number of time steps T. This is
the case despite some options that attempt to
optimize memory usage. For SMOKE-HC the
expected gain in wall clock time comes at the cost
of an increase in memory demand that escalates
with the number of time steps T. Table 4.2
compares the memory requirements for the serial
and parallel versions of SMOKE. The increase in
memory usage for the HiPERiSM parallel version
is not a major sacrifice since current market cost
of memory is approximately $8.50 per gigabyte
(i.e. the 96GB on the INTEL platform cost $816).
This represents 26% of the cost per gigabyte
approximately 4 years earlier.

Table 4.2. Memory usage in MOVESMRG

Case and
number of

time steps T
(hours)

Memory usage by MOVESMRG
version (Gigabytes)

EPA HiPERiSM
25 3.0 6.7
49 3.6 10
73 4.3 14
97 4.9 18
121 5.5 22

4.4 Status of parallel code

The thread parallel strategy described above
can only succeed if there is sufficient coarse grain
parallel work for each thread. However, because
of the diminishing speed up observed at higher
thread counts, it is clear that the amount of work
per thread is reducing. In addition, not all counties
have the same amount of work because of widely
differing ranges of the innermost loops in Table
4.1. The example of Fig. 4.1 shows that only 28%
of the 146 counties experience a parallel speed up
in the range 2 to 5.5 with 4 or more threads. It is
enhanced parallel performance in these counties
that contributes to the over-all speed up of the
entire simulation.

These issues continue to be investigated and
results presented here are preliminary, but
sufficient to demonstrate proof-of concept.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

1 14 27 40 53 66 79 92 105 118 131 144
146 counties sorted on increasing 1 thread time

2 threads
4 threads
6 threads
8 threads

Fig 4.1: Results of a test case (T=97) with the parallel
version of SMOKE-HC on the INTEL node for the
number of threads in the legend. This shows parallel
thread scaling for each of 146 counties sorted (left to
right) on increasing time for one thread.

5. PARALLEL PERFORMANCE RESULTS

5.1 Test case runs

Two performance metrics are introduced to
assess thread parallel performance in the
SMOKE-HC modified code:

(a) Speedup is the gain in runtime over the
standard U.S. EPA runtime,

(b) Scaling is the gain in runtime for thread
counts larger than 1, relative to the result
for a single thread.

For the five cases of Table 4.2, and their
corresponding time step count T, Table 5.1 shows
the runtimes in hours for the serial version of
SMOKE and the corresponding parallel runtimes
for increments in the thread count. The number of
cores on the INTEL platform of Table 2.1 is limited
to 8, but that of the AMD platform is considerably
larger. Platform comparison shows an EPA serial
version wall clock time smaller on INTEL than on
the AMD node. Noteworthy is the 2.5%-7% speed
up of the single thread parallel version over the
serial EPA code. As the thread count increases for
the parallel version, the successive improvement
in wall clock time diminishes. Of special
significance is the scaling result for the T=121
case. On the AMD platform, with 24 threads, the
speedup is 3.2 times faster than the serial
(SMOKE-EPA) time.

For each of the five cases of Table 5.1, Fig.
5.1 and Fig. 5.2, show wall clock time results on
INTEL and AMD nodes for the respective number
of threads listed. Correspondingly, Table 5.2, Fig.
5.3 and Fig. 5.4, show the thread scaling results
for parallel performance.

Presented at the 12th Annual CMAS Conference, Chapel Hill, NC, October 28-30, 2013

4

Table 5.1. Portland compiler wall clock times (in hours)
for serial U.S. EPA (SMOKE-EPA) and parallel
(SMOKE-HC) versions of SMOKE on two platforms.

Serial
and

parallel
thread
count

P
latform

Case and number of time steps T

25 49 73 97 121

serial

IN
TE

L

1.21 1.71 2.16 2.65 3.14
1 1.18 1.59 2.03 2.48 2.95
2 1.04 1.28 1.52 1.75 2.00
4 1.00 1.12 1.30 1.45 1.60
6 0.95 1.05 1.18 1.32 1.41
8 0.91 1.02 1.12 1.23 1.34

serial

A
M

D

2.36 3.42 4.46 5.39 6.40
1 2.27 3.20 4.16 5.07 5.97
2 1.82 2.33 2.84 3.35 3.86
4 1.64 1.96 2.24 2.55 2.86
6 1.63 1.86 2.10 2.39 2.60
8 1.61 1.79 2.03 2.29 2.55

10 1.54 1.74 1.90 2.07 2.25
12 1.50 1.68 1.83 1.99 2.16
16 1.46 1.62 1.78 1.93 2.04
20 1.50 1.63 1.78 1.90 2.17
24 1.45 1.59 1.73 1.87 1.98

Table 5.2. Thread scaling with the Portland compiler for
the SMOKE-HC version of SMOKE on two platforms.

Parallel
thread
count

P
latform

Case and number of time steps T

25 49 73 97 121

2 IN
TE

L

1.13 1.24 1.34 1.42 1.47
4 1.18 1.42 1.57 1.71 1.85
6 1.23 1.52 1.73 1.88 2.09
8 1.29 1.56 1.82 2.02 2.20
2

A
M

D

1.24 1.37 1.46 1.51 1.55
4 1.38 1.63 1.85 1.98 2.09
6 1.39 1.72 1.98 2.12 2.30
8 1.41 1.79 2.04 2.21 2.35

10 1.47 1.84 2.19 2.45 2.66
12 1.51 1.91 2.28 2.55 2.76
16 1.55 1.98 2.34 2.63 2.93
20 1.51 1.97 2.34 2.66 2.75
24 1.56 2.01 2.41 2.72 3.02

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7 8 9
Number of threads

25
49
73
97
121

Fig 5.1: Wall clock time (hours) for five test cases with
the parallel version of SMOKE-HC on the INTEL node.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0 5 10 15 20 25
Number of threads

25
49
73
97
121

Fig 5.2: Wall clock time (hours) for five test cases with
the parallel version of SMOKE-HC on the AMD node.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

20 40 60 80 100 120 140
Simulation time step T

1
2
4
6
8

Fig 5.3: Thread scaling for five test cases with the parallel
version of SMOKE-HC on the INTEL node for the thread
counts in the legend. The 1 thread result is unity.

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2

20 40 60 80 100 120 140
Simulation time step T

1
2
4
6
8
10
12
16
20
24

Fig 5.4: Thread scaling for five test cases with the
parallel version of SMOKE-HC on the AMD node for the
thread counts in the legend. The 1 thread result is unity.

5.2 Trend line extrapolations

Trends in values for the parallel times in Table
5.1, Fig. 5.1, and Fig. 5.2, may be accurately fitted
with linear trend lines as a function of T. These are

Presented at the 12th Annual CMAS Conference, Chapel Hill, NC, October 28-30, 2013

5

then used to establish expected runtimes for much
larger time step T ranges. These extrapolations
are shown in Figs. 5.5 and 5.6, for INTEL and
AMD platforms, respectively. The thread counts
are designated in the legend.

0.9

1.4

1.9

2.4

2.9

3.4

3.9

4.4

4.9

5.4

20 60 100 140 180 220 260 300 340 380 420 460
Simulation time step T

2
4
6
8

Fig 5.5: Extrapolation of Wall clock time (hours) with the
parallel version of SMOKE-HC on the INTEL node.

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

20 60 100 140 180 220 260 300 340 380 420 460
Simulation time step T

4
8
10
12
16
24

Fig 5.6 Extrapolation of Wall clock time (hours) with the
parallel version of SMOKE-HC on the AMD node.

1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50

20 60 100 140 180 220 260 300 340 380 420 460
Simulation time step T

2
4
6
8

Fig 5.7: Extrapolation of thread scaling with the parallel
version of SMOKE-HC on the INTEL node.

Corresponding extrapolations for thread
scaling, as functions of time step count T, are

shown in Figs. 5.7 and 5.8, for INTEL and AMD
platforms, respectively, for the thread counts
designated in the legend. Trend lines for these
were obtained from fits to the results of Figs. 5.3
and 5.4 with a simple power law.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

20 60 100 140 180 220 260 300 340 380 420 460
Simulation time step T

4
8
10
12
16
24

Fig 5.8 Extrapolation of thread scaling with the parallel
version of SMOKE-HC on the AMD node.

6. SMOKE workload throughput

6.1 Comparing hardware platforms

There are significant differences in wall clock

time and thread scaling between AMD and INTEL
platforms for the same model simulation of an
individual case at each time step count T.
However, with more threads better performance is
expected. One example of this is shown in Fig.
6.1. The wall clock time extrapolation as a function
of time step (T) is for two platforms: INTEL with 4
threads and AMD with 12 threads. These used the
trend line extrapolations introduced in the previous
section.

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

4.4

20 60 100 140 180 220 260 300 340 380 420 460
Simulation time step T

Intel 4 threads
AMD 12 threads
Ratio AMD / Intel

Fig 6.1: Extrapolated wall clock time (hours) versus time
step (T) for the parallel version of SMOKE-HC on INTEL
and AMD nodes with 4 and 12 threads, respectively.
The ratio of times (AMD / INTEL) at each T is also
shown.

Presented at the 12th Annual CMAS Conference, Chapel Hill, NC, October 28-30, 2013

6

The ratio (AMD / INTEL) of the wall clock
times at each T value is also shown in Fig. 6.1 and
demonstrates a reduction as the value of T
increases. Actual wall clock times for cases with T
in the extrapolated range (beyond 121) may differ.

6.2 Workload throughput metric

It is of interest to measure performance for
workload throughput. In the case of SMOKE the
workload is concurrent individual parallel runs on
either platform, where each has a wide range in
time steps (T). To measure performance of
workload throughput a suitable metric is:

the number of simulation weeks completed
per wall clock hour.
For each wall clock hour this counts how many

multiples of 7 x 24 (= 168 hours) steps in T
complete.

169
193

217
241

265
289

313
337

1.0

1.1

1.2

1.3

1.4

W
ee

ks
 p

er
 w

al
l c

lo
ck

 h
ou

r

T

Intel Threads = 2 4 6 8

169
193
217
241
265
289
313
337

Fig 6.2: Workload throughput metric with the parallel
version of SMOKE-HC on the INTEL node as a function
of the thread count and number of simulation time steps.

169
193

217
241

265
289
313337

1.0

1.1

1.2

1.3

1.4

W
ee

ks
 p

er
 w

al
l c

lo
ck

 h
ou

r

T

AMD Threads = 4 8 10 12 16 24
169
193
217
241
265
289
313
337

Fig 6.3: Workload throughput metric for the parallel
version of SMOKE-HC on the AMD node as a function
of the thread count and number of simulation time steps.

Using the extrapolations found in Section 5.2 a
simple model populates either platform with as

many concurrent cases allowable up to the
available limits of memory and core count. These
population samples are examined to see which
maximize the workload throughput metric defined
above. Figs. 6.2 and 6.3, respectively, present
results of the workload metric for INTEL and AMD
platforms. For example, on the INTEL node the
best metric value of 1.2 is for 3 x 2-thread runs
with T=169 each, or 1.3 for 2 x 4-thread runs at T=
265. The AMD workload equals the INTEL T=169
metric value with 3 x 12-thread runs and exceeds
it at 1.37 for 3 x 12-thread runs with T=217 each.
Clearly, although the INTEL platform is the
speedier of the two, there is more opportunity for
increased SMOKE workload throughput on the
AMD node.

7. CONCLUSIONS

This analysis compared runtime of SMOKE in
a new OpenMP thread parallel version with the
U.S. EPA release. The results indicated that with
121 time steps the multi-threaded parallel speedup
over the EPA version was 2.3 with 8 parallel
threads (INTEL node), and 3.2 with 24 threads
(AMD node), rerspectively. However, the AMD
platform offered the best workload throughput
capacity for multiple runs with longer time step
ranges because of a higher core count.

Further opportunities remain for thread
parallelism in other parts of the SMOKE model
outside of MOVESMRG and work in this direction
continues at HiPERiSM Consulting, LLC. The new
version of SMOKE-HC offers layers of parallelism
not available in the standard U.S. EPA release
and may be ported to hardware and software that
supports multiple parallel threads.

REFERENCES

ABSOFT: The Absoft Corporation
http://www.absoft.com

BAEK: The author gratefully acknowledges SMOKE
input data provided by B.H. Baek (UNC Institute for the
Environment) and the Emissions Inventory and Analysis
Group, OAQPS, U.S. EPA.

CMAS: The SMOKE model is available at
http://www.smoke-model.org

INTEL: Intel Corporation, http://www.intel.com

PGI: The Portland Group http://www.pgroup.com

http://www.absoft.com/
http://www.smoke-model.org/
http://www.intel.com/
http://www.pgroup.com/

