
Presented at the 11th Annual CMAS Conference, Chapel Hill, NC, October 15-17 2012

1

A NEW PARALLEL SPARSE CHEMISTRY SOLVER FOR CMAQ

George Delic*
HiPERiSM Consulting, LLC, P.O. Box 569, Chapel Hill, NC 27514, USA

1. INTRODUCTION

This presentation reports on two major

performance enhancements for CMAQ. The first
change replaces the sparse matrix solver used for
chemical species concentrations. The second
modification integrates the new solver into the
transit over grid cells so that separate blocks of
cells are distributed to different threads. Applying
both modifications together improves CMAQ
efficiency. This modified version of CMAQ is
tested with compilers from the Portland Group®
[PGI], the Intel Corporation® [INTEL], and the
Absoft Corporation® [ABSOFT]. Results are
reported for multicore platforms from the Intel
Corporation (Intel) and Advanced Micro Devices
(AMD).

This report examines parallelism in CMAQ at
the thread level in the Rosenbrock (ROS3)
chemistry solver version of CMAQ 4.7.1 (hereafter
ROS3-HC). This second version offers the best
potential for parallel performance improvement. An
earlier hybrid parallel model (ROS3-HC) with three
levels of parallelism has been described in
previous reports at this meeting [Delic,2003-2010].
The (outer) Message Passing Interface (MPI) level
is the one previously delivered in the standard
U.S. EPA distribution. The (inner) parallel layers
developed at HiPERiSM have added both thread-
level parallelism and instruction-level parallelism
(at the vector loop level) and are suitable for either
commodity processors or GPGPU targets. The
next section details the HiPERiSM test bed before
some description of the latest modifications is
presented.

2. TEST BED ENVIRONMENT

2.1 Hardware

The hardware systems chosen were the
platforms at HiPERiSM Consulting, LLC, shown in
Table 2.1. Each of the two platforms, Intel and
AMD, have a total of 8 and 48 cores, respectively.
This cluster is used for either MPI only, or hybrid
thread-parallel OpenMP plus MPI execution.

* Corresponding author: George Delic,
george@hiperism.com.

However, to focus analysis on the new
modifications only results for a single MPI
processes are discussed here since they apply to
each MPI process.

Table 2.1. Platforms at HiPERiSM Consulting, LLC

Platform AMD Intel

Processor AMD™ Opteron
6176SE

Intel™ IA32
W5590

Peak Gflops (SP/DP) 110.4 / 55.2 106.6 / 53.3
Power consumption 105 Watts 130 Watts
Cores per processor 12 4

Power consumption per core 8.75 Watts 32.5 Watts
Processor count 4 2
Total core count 48 8

Clock 2.3GHz 3.33GHz
Band-width 42.7 GB/sec 64.0 GB/sec

Bus speed 1333 MHz 1333 MHz

L1 cache 64KB 64KB
L2 cache 512 KB(1) 256MB

L3 cache(2) 12MB 8MB
(1) Per core, (2) Per socket

2.2 Compilers

This report concurrently used compiler
versions from Intel (12.1), Portland (11.5) and
Absoft (11.5) for CMAQ 4.7.1 on 64-bit Linux
operating systems and hardware. The HiPERiSM
Consulting, LLC, version of CMAQ (ROS3-HC)
with multi-threaded parallelism was compiled and
executed with all three compilers on both
platforms shown in Table 2.1.

For each compiler several groups of
optimization switches were tested. For each
compiler group this analysis included new builds of
CMAQ support libraries such as NetCDF, IOAPI,
MPICH, STENEX and PARIO. In each case
compiler options have been closely examined for
effects on numerical precision. This study found
some anomalous behavior when the highest
optimization levels are implemented with some
compilers and these will be described below.

3. EPISODE STUDIED

For all CMAQ 4.7.1 results reported here the
model episode selected was for August 09, 2006,
using data provided by the U.S. EPA. This episode
has the CB05 mechanism with Chlorine
extensions and the Aero 4 version for PM
modeling. The episode was run for a full 24 hour
scenario on a 279 X 240 Eastern US domain at 12

Presented at the 11th Annual CMAS Conference, Chapel Hill, NC, October 15-17 2012

2

Km grid spacing and 34 vertical layers for a total of
2.3 million grid cells. The first pass over all blocks
of cells in the grid domain was examined in detail.

4. SPARSE MATRIX ANALYSIS

4.1 BACKGROUND

The Rosenbrock and Gear chemistry solvers
in CMAQ apply Gaussian elimination of a sparse
matrix system Ax=b many millions of times per
simulation. The dimension of matrix A is
determined by the number, N, of reacting chemical
species (N=72 in this study). While the rank of the
species matrix is N2 = 5148, the number of non-
zeros, NZ, is typically an order of magnitude less
(of the order of 760). An example of the matrix
portrait is shown in Fig. 4.1 (after reordering of
rows and columns).

Fig 4.1: Sparse matrix portrait printed from rbsparse in
CMAQ4.7.1 in the ROS3 solver version. Each
row/column corresponds to the reacting species.

The matrix solution is effected in three stages:
(i) decomposition A=LU,
(ii) forward solve for Lz=b,
(iii) backward solve for Ux=z,

where L and U, are lower and upper triangular
matrices such that A=LU. For CMAQ matrix A has
large condition numbers and is diagonally
dominant. Therefore scaling is applied for A to
permit exception handling at runtime. This allows
underflows and avoids the execution halting as a
result of overflows when no scaling is used. The
above solution is applied to each block of grid cells
passed to the chemistry solver.

4.2 JSPARSE

Historically the U.S. EPA CMAQ Gear and
Rosenbrock chemistry solvers have relied on the
JSparse [Jacobson and Turco] procedure to
perform the Gaussian Elimination outlined above.
This takes advantage of the known sparsity
structure before solution begins. JSparse exploits
this by using a symbolic decomposition and
solution steps that filter out (or minimize)
computation of zero entries in sparse Gaussian
elimination. This requires the use of several layers
of indirect addressing of array subscript and this
choice inhibits parallelization of loop nests in the
Gaussian elimination algorithm used in JSparse.

 Thus JSparse suffers from the deficiency that
parallelism is allowed only at the instruction level
on inner vector loops over cells for each block of
the grid domain passed to the solver. Such indirect
addressing subscripts cannot be overcome by
compiler options alone.

4.3 FSPARSE

This section summarizes the algorithmic
choices that transform JSparse into FSparse for
the Rosenbrock (ROS3) chemistry solver.

First of all a few words about sparse matrix
storage schemes is in order. All sparse matrix
algorithms reference only non-zero elements and
store the value in a real array, but differ in the
storage method for the location in the full matrix.
Each scheme requires indirect subscript
references at some level, but the implementation
has consequences for parallel algorithm
opportunities The Triplet storage scheme (used in
JSparse) scans row and columns of the matrix and
stores column and row index values in two integer
arrays. The Compressed Column (CC) scheme
scans down successive columns and uses one
integer array i of length NZ, and another pointer
array p of length N+1 so that row indices of entries
in column j are stored in i(p(j) through i(p(j+1) -1).
The scheme is described in chapter 2 of Davis
[Davis, 2006] for the C language case. The
Compressed Row (CR) scheme scans across
successive rows and uses a corresponding
storage scheme.

The starting point in FSparse is the CSparse C
language library developed by Davis [Davis, 2006]
which uses the CC storage form and has been
implemented with substantial modification at
HiPERiSM. The CSparse library is quite general
and extensive, but only the sparse Gaussian
procedures have been adopted. CSparse allows a
generalized factorization of the type PAQ=LU,

Presented at the 11th Annual CMAS Conference, Chapel Hill, NC, October 15-17 2012

3

where P is obtained from partial pivoting and Q is
chosen to reduce fill-in in LU. In CMAQ the
permutation matrix Q is in effect the result of the
re-ordering step taken over from the JSparse
procedure [Jacobson and Turco]. However, P=I
(the identity matrix) is the choice in the CMAQ
model because the matrix A is diagonally
dominant.

Table 4.1. C procedures from CSparse translated to
Fortran in the FSparse versions of the ROS3 solver.
CSparse procedure Description

cs_compress Map Triplet to CC storage form
cs_lu Driver for LU decomposition
cs_spsolve Sparse solve for L, and U
cs_reach Reach function
cs_dfs Depth first search
cs_lsolve1 Solve Lz=b
cs_usolve1

 Solve Ux=z
cs_norm Compute 1-norm of A

1) Converted to parallel and vector form using
Compressed Row (CR) format for L and U

The CSparse procedures listed in Table 4.1

have been extracted and translated into Fortran
for integration into ROS3-HC. However, local
modifications have been made. For example,
cs_lsolve and cs_usolve, will not allow parallel
vector instructions on inner loops because the CC
form uses indirect addressing of array indexes on
the left hand side of the assignment (“=”). For this
reason ROS3-HC converts L and U to
Compressed Row (CR) format after the sparse CC
decomposition step for A=LU. The suggestion for
the CR form enabling a parallel algorithm is from
Björck [Björck, 1996]. This enables vector SSE
instructions to schedule the inner loops of forward
and backward solve steps while also allowing
parallel potential in the outer loop. Such parallel
loop nests may easily be parallelized in a GPGPU
version, or whenever nested parallel threads are
enabled in any future OpenMP standard.

An example of code for the solver part of
ROS3-HC is shown in Fig. 4.2.

row_fr1: do s_i = 1, NS - 1 ! row
 DO NCELL = 1, NUMCELLS ! vector loop # 31
 rivot(NCELL) = K1(NCELL ,s_i)
 ENDDO

 col_fr1: do s_j = L_w(s_i,sn) , L_w(s_i+1,sn)-2 ! col
 DO NCELL = 1, NUMCELLS ! vector loop # 32
 rivot(NCELL) = rivot(NCELL) - Lr_Cx(NCELL,s_j) *
& K1(NCELL, L_Cj(s_j,sn))
 ENDDO
 end do col_fr1

 DO NCELL = 1, NUMCELLS ! vector loop # 33
 K1(NCELL,s_i) = rivot(NCELL)
 ENDDO
 end do row_fr1

Fig 4.2: Example of the forward solve Lz=b of the ROS3
solver (where b=K1). A similar principle is used in the
backward solve Ux=z. This pair of solve steps is
repeated three times for each time step in the CMAQ
Rosenbrock solver procedure CHEM.

The outer row loop is not parallelizable
(because of the recurrence on array K1). The
column loop is parallelizable because the CR
format places the indirect reference on the second
index of the K1 array. All loops contain a vector
loop on the cell index NCELL for the current block
and NUMCELLS is the blocksize. A temporary
array (rivot) is introduced so that a vector-inhibiting
recurrence is avoided on the innermost loop (#32).

4.4 RBDRIVER (aka CHEM)

The procedure CHEM in CMAQ has major
loops over the blocks of cells that the entire grid
domain has been partitioned into. Each block is
then processed in the solve steps described in
Section 4.1. The number of blocks is calculated
from the BLKSIZE parameter choice in
GRID_CONF. Since the chemistry solver time step
for each block is independent of all others, it is
logical to distribute different blocks amongst
available threads in a thread parallel team using
an appropriate scheduling algorithm. This strategy
is attractive because it creates coarse parallel
granularity for thread teams as a result of the
substantial scope of the contained arithmetic
operations.

Table 4.2. Subroutine in the U.S. EPA version of the
ROS3 solver modified in the new ROS3-HC algorithm
CMAQ procedure Description

GRID_CONF Define grid and set BLKSIZE
rbdata_mod Declare allocatable arrays
rbinit Initialize and allocate arrays
rbsparse Set up chemistry structure and

symbolic Gaussian elimination
rbdriver Loop over grid blocks and solve

at each chemistry time step
rbcalcks1 Prepare photolytic rate

coefficients
rbsolver1 Driver for 3-stage Rosenbrock

chemistry algortihm
rbfeval1 Compute rate of change of

species concentrations
rbjacob1 Compute Jacobian matrix
rbdecomp1 Perform LU decomposition
rbsolve1 Perform forward/backward solve

1) Inlined into rbdriver

Table 4.2 shows the subroutines modified in

the HiPERiSM version of ROS3. This indicates
those subroutines inlined into rbdriver that has two

Presented at the 11th Annual CMAS Conference, Chapel Hill, NC, October 15-17 2012

4

large parallel regions: one for reordering (as in the
original JSparse version), and a second for the
chemistry solution with time step integration. Both
parallel regions contain loops over the total
number of grid blocks, but the first takes a small
fraction of the time spent in rbdriver.

The new version of rbdriver was created by
successive code structure modifications of the
standard ROS3 solver without changing the
science of the model in any way. The modified
ROS3-HC applies a thread parallel strategy that
has three prongs:

1. Partitioning storage into global shared
variables and those private to threads.

2. Distribution of BLKSIZE chunks of the grid
domain to separate threads in a parallel
thread team.

3. Ensuring each thread has inner loops that
vectorize whereever possible.

Specific restructuring steps applied to the

standard CMAQ gas chemistry solver included:
 Manual inline of procedure calls
 Arrangement of inner loops so that they

target SSE vector instructions.
 Declaration of thread parallel regions by

insertion of OpenMP directives and
classification of local (thread private) and
global (shared) variables.

 Simplification/streamlining of redundant
code.

4.5 Status of code

This thread-vector parallel strategy can only
succeed if there is sufficient coarse grain parallel
work for each thread. This is achieved with the
modifications described above. However, this
creates a large parallel region for the block loop in
the solver thread-parallel region. As a
consequence, debugging parallel code can be a
challenge with opportunities for memory corruption
and race conditions. Significant progress has been
made but some issues remain to be cleared up.
Along the way some important differences
between results of different compilers have been
observed. Such differences appear to originate in
compiler code transformations with higher
optimization level choices. Others originate in the
use of mixed-mode arithmetic in the standard
release of the U.S. EPA CMAQ and this has
consequences for numerical precision. Such
issues continue to be investigated and results
presented here are preliminary, but sufficient to
demonstrate proof-of concept.

5. RESULTS

5.1 Compiler issues with CMAQ

CMAQ in the U.S. EPA and HiPERISM
versions was compiled and executed with all three
compilers listed in the introduction. However,
several compiler problems were encountered. The
Intel compiler fails when inter procedural analysis
is enable with an internal compiler error and
therefore this option was disabled. The Absoft
compiler fails with an internal error if the
optimization level is –O3, so this was lowered to –
O2 for the whole of CMAQ, but –O3 was restored
for a re-compile of rbdriver. All three compilers
vectorize many of the 100 or so candidate loops in
the ROS3-HC version of rbdriver, but the Intel
compiler vectorizes fewer than the other two
compilers (presumably because of scalar
instruction scheduling of CPU resources). Also
important was the differing numerical results
described below.

5.2 Test case of first block

In this section, and the next, two performance
metrics are introduced to assess thread parallel
performance in the ROS3-HC modified code:

(a) Speedup is the gain in runtime over the
standard U.S. EPA runtime,

(b) Scaling is the gain in runtime for thread
counts larger than 1, relative to the result
for a single thread.

A test case of the first pass over the grid was
investigated for a BLKSIZE parameter of 640
(vector loop length) and 3558 blocks in the major
loop of CHEM. Table 5.1 shows timings for
completion of this major loop for the U.S. EPA
version of CMAQ and the ROS3-HC version of the
Rosenbrock solver. The time units are 106
microseconds, obtained from the Fortran
procedure system_clock (the results for the Intel
compiler appear to be anomalous).

With two threads the 3558 solve blocks were
alternately distributed using a dynamic scheduling
algorithm in OpenMP. Not all cases are completed
at this time, but the thread scaling results are very
encouraging as shown in the thread scaling
column in Table 5.1 with a range of 1.26 to 1.67.
This suggests good opportunities at higher thread
counts.

Presented at the 11th Annual CMAS Conference, Chapel Hill, NC, October 15-17 2012

5

Table 5.1. Times (in 106 microseconds) for the U.S. EPA
(ROS3-EPA) and ROS3-HC versions of CMAQ 4.7.1.
The platforms are Intel and AMD for the Absoft, Intel
and Portland compilers.

Compiler P
latform

ROS3-
EPA
time

ROS3-HC
Time and thread scaling
1

thread
2

threads
Thread
scaling

Absoft Intel

 363
Intel 1.56 3.22 2.38 1.35

Portland 161 527 417 1.26
Absoft A

M
D

507 787
Intel 3.9 6.7 4.6 1.47

Portland 390 643 386 1.67

Table 5.2 shows speedup of ROS3-HC versus

the U.S. EPA versions of CMAQ. The EPA version
used the conventional JSparse procedure and
ROS3-HC used FSparse. The JSparse version
appears to benefit from the enhanced scalar (and
cache) performance of the Intel platform and the
speedup results are lower there than on the AMD
platform. For the AMD platform it is clear that at
higher thread counts the ROS3-HC version of
CMAQ will out-perform the standard U.S. EPA
distribution.

Table 5.2. OpenMP speedup for the U.S. EPA (ROS3-
EPA) and ROS3-HC versions of CMAQ 4.7.1. The
platforms are Intel and AMD for the Absoft, Intel and
Portland compilers.

Compiler P
latform

ROS3-
EPA

ROS3-HC
Speed up by thread count

1 2

Absoft Intel

Intel 1.0 0.49 0.66

Portland 1.0 0.30 0.39
Absoft A

M
D

1.0 0.64

Intel 1.0 0.59 0.86
Portland 1.0 0.61 1.01

5.3 Results for the 24 hour episode

Table 5.3 shows the available timing results
for the full 24 hour scenario with a BLKSIZE
parameter of 640. This table will be expanded as
more results are completed.

5.4 Numerical precision issues

The results of the previous discussion
compared three different compilers. For each
compiler a careful choice was made of compiler
switches that control how numerical arithmetic
operations are performed. Nevertheless, in the
course of the detailed investigation of the first pass

over all 3558 blocks, numerical differences
between compilers were observed. Specifically the
number of time steps each compiler used was
different. This difference is due to the calculation
of the time step increment in the solver step.

Table 5.3. Wall clock times (in hours) for the U.S. EPA
(ROS3-EPA) and ROS3-HC versions of CMAQ 4.7.1.
The platforms are Intel and AMD for the Absoft, Intel
and Portland compilers.

Compiler P
latform

ROS3-
EPA

ROS3-HC
Time in hours by thread count

1 2 4 8

Absoft Intel

Intel
Portland 57.0 48.2
Absoft A

M
D

 156.7
Intel 112.6

Portland 83.9 66.4

Table 5.4. Execution time and total number of chemistry
time steps in ROS3-HC versions of CMAQ 4.7.1 for the
first pass over the 3558 blocks of the entire domain. The
platforms are Intel and AMD for the Absoft, Intel and
Portland compilers.

Compiler ROS3-HC
(1 thread)

Wall clock
time (sec) total time step count

Absoft
Intel 281 25782

Portland 301 25753
Absoft 936 25770
Intel 600 25782

Portland 613 25753

The results of Table 5.4 are for parallel loop

execution where there is a halt after completion of
the first pass over 3558 blocks on the entire grid
domain. The wall clock time for the parallel loop is
shown as is the total count of all chemistry time
steps. This time step count does not depend on
the hardware platform, but is does depend on the
choice of compiler. Possible causes for the
differences observed in Table 5.4 are two-fold:

• Choice of compiler switches
controlling numerical operations

• Mixed mode arithmetic in CMAQ
The first point will affect precision in the LU

decomposition and solve steps. Such changes are
easily monitored in ROS3-HC with an option to
calculate several types of norms including |A|, |x|,
and |Ax-b|. The second point is due to mixing of
single and double precision floating point variables
in rbdriver and the chemistry solver. While most
variables in the Rosenbrock solver are double
precision, some are not (e.g. results returned from

Presented at the 11th Annual CMAS Conference, Chapel Hill, NC, October 15-17 2012

6

rbcalcks), and the stringent time-step increment
calculation. These issues require more detailed
study than space here allows.

6. LESSONS LEARNED

6.1 Compilers for the CMAQ model

Differentiating compilers for CMAQ based on

performance alone is now more difficult because
of the lower optimization levels that allowed for
stable compilation. As complier bugs fixes are
completed in new releases this situation will
change.

An additional discovery at HiPERiSM
Consulting, LLC, has been the consequences
compiler optimization and complier choices have
for numerical precision. For this reason further
study is appropriate and in the interim care needs
to be exercised in the use of compilers to avoid
erroneous model predictions. As a consequence
the most conservative choices for compiler
switches that control numerical precision are
advisable for all compilers used with CMAQ.

As a consequence of these observations a
direct comparison of the timing of the three
compilers is not appropriate at this time because
of these numerical difference observations
coupled with the optimization choices made for
stable compilation.

6.2 CMAQ in multi-thread mode

This analysis compared runtime of CMAQ
4.7.1 in the new OpenMP parallel version with the
U.S. EPA release. The observations indicated that
the multi-threaded speedup:

 Showed a range of 1.26 to 1.67 with 2
parallel threads.

 Depends on the choice of hardware.
 Was dependent on compiler choice based

on comparison of compilers from Absoft,
Intel and the Portland Group.

6.3 Comparing hardware platforms

There is a large difference in runtime and
thread scaling between AMD and Intel platforms
for the same model simulation of an individual
serial run. However, with more threads in the
thread team good scaling is anticipated and work
in this direction will continue.

7. CONCLUSIONS

This report has described an analysis of
CMAQ 4.7.1 behavior in the standard U.S. EPA
release and a new thread parallel version of
CMAQ for the Rosenbrock solver. Opportunities
exist for speedup with an increased number of
parallel threads. This trend was observed with
three compilers on two hardware platforms.
However, issues were observed for numerical
precision due in part to compiler differences and
the way precision is treated in CMAQ.

Compilers from Absoft, Intel and the Portland
group all offered value for the CMAQ model but
some experience difficulties with higher
optimization levels.

 Further opportunities remain for thread
parallelism in other parts of the CMAQ model
outside of the solver and work in this direction
continues at HiPERiSM Consulting, LLC. The new
(second) version of ROS3-HC offers layers of
parallelism not available in the standard U.S. EPA
release and may be ported to hardware and
software that supports nested parallel threads.

REFERENCES

ABSOFT: The Absoft Corporation
http://www.absoft.com

Björck, Åke, Numerical Methods for Least Squares
Problems, SIAM, Philadelphia, 1996.

Davis, T.A., Direct Methods for Sparse Linear
Systems, SIAM, Philadelphia, 2006.

Delic, G., 2003-2010: see presentations at the Annual
CMAS meetings (http://www.cmasecenter.org).

INTEL: Intel Corporation, http://www.intel.com

Jacobson, M. and Turco, R.P., (1994), Atmos.
Environ. 28, 273-284

PGI: The Portland Group http://www.pgroup.com

http://www.absoft.com/
http://www.cmasecenter.org/
http://www.intel.com/
http://www.pgroup.com/

