Satellite Assimilation to Improve Cloud Simulation in WRF Model

Yun Hee Park¹, Arastoo P. Biazar¹, Richard McNider¹, Kevin Doty¹, Bright Dornblaser²

¹University of Alabama in Huntsville ²Texas Commission on Environmental Quality (TCEQ)

10th CMAS conference Oct. 26th 2011

CONTEXT

Scientific questions
Data description and Model configuration
Method of assimilating satellite data
Analytical method
Over prediction
under prediction
Results
Conclusion

Scientific Question

Real How are meteorological variables (e.g. cloud liquid water, vertical velocity) related to cloud fields?

Realise How to adjust meteorological fields in the model to satisfy realism of clouds?

Real How to change dynamics in the model, based on the cloud types?

Cloud Types

Relationship among meteorological variables

Distribution of the total cloud liquid water to cloud albedo

Cloud Albedo Distribution of the **max vertical velocity** according to cloud albedo when cloud liquid water exists above the 1-km

Process to data assimilation

- 1. Compare cloud locations of the observation to the model
- 2. Identify discrepancies between the observation and the model clouds
 - Separate over-prediction and under-prediction
- 3. Based on the observation, estimate target vertical velocities
- 4. Adjust horizontal winds to sustain target vertical velocities

Data Description

GOES product

- Provided by SPoRT (Short-term Prediction Research and Transition Center) in NASA
- Providing 4 km cloud products (e.g. Cloud top temperature, cloud albedo, insolation, surface albedo)
- Assimilation time: during a daytime available for GOES cloud albedo

CR WRF

Cost Run time : a month in 2 hours segments with restart option

Model configuration

	Domain 01		
Running period	August 4 th – August 23 th in 2006		
Horizontal resolution	36 km		
Time step	90s		
Number of vertical levels	42		
Top pressure of the model	50 mb		
Shortwave radiation	Duhia		
Longwave radiation	RRTM		
Surface layer	Monin-Obukhov similarity		
Land surface layer	Noah (4-soil layer)		
PBL	YSU		
Microphysics	LIN		
Cumulus physics	Kain-Fritsch		
Grid nudging	Horizontal wind		
Meteotological input data	EDAS		

GOES retrieval data at August 7th, 2006 at 17 UTC

Cloud top temperature

If cloud albedo is greater than 15, and cloud top temperature is less than that of height Z(km) ($0.5 \le Z \le$ 2.0)

Z=1.5x(3.5-terrain height)/3.5+0.5 Then, height corresponding the cloud top temperature is cloud top height.

Total mixing ratio range from 10⁻⁶ to 0.005 (plots is total Q x 1000) Cloud top height is in km

Determination for adjusting clouds

Real From GOES

- Two parameters, cloud albedo and cloud top temperature, are used to determine clouds
 - \bigcirc Cloud albedo > 0.15

Register the end of t

R From WRF

- Total mixing ratio, sum of cloud mixing ratio and ice mixing ratio > 1.0E-6
- Cloud albedo is calculated by 1- insolation/max_insolation
- Cost The height of maximum $q > (0.5 \sim 2km)$
- Clouds in the observation and the model can be classified to four categories.

Analytical Approaches

OR Under-prediction

- Represented Purpose : to generate clouds over the column
- **Assumption**
 - CM The clouds are in developing stage, meaning that maximum w is in the cloud base height.
 - A parcel at the cloud base should be saturated to form clouds

Analytical Approaches

Over-prediction

- technique: introducing
 subsidence to remove
 clouds
- Assumption
 - Separate nonprecipitable (NP) and precipitable(P) clouds

AD (Analytical methods for Disagreement areas)
-Take vertical velocities for under-prediction and overprediction areas from the cloud category index

FDDA nudging
 Based on the 1Dvar output, U and V winds are changed

Time series for cloud evaluation

Cloud AI between GOES and WRF

Each day, AI for 8 hours (16~23UTC) is distributed. Overall, AI between the observation and the model is increased by about 7%.

Date: August 13th , 2006 at 19 UTC

Agreement Index

AI for WRF_cntrl

	WRF		
	NC	с	
SN NC	7174	1824	8998
00 c	1943	2049	3992
	9117	3873	12990

AI for WRF_assim

		NC	с	
OES	NC	8266	732	8998
0g	δ c	1892	2100	3992
		10158	2832	12990

Conclusion

Cloud albedo has an exponential relationship with cloud liquid water, but there is no significant relationship between cloud thickness and the magnitude of vertical velocity.

Acknowledgment

○ The findings presented here were accomplished under partial support from NASA Science Mission Directorate Applied Sciences Program and the Texas Commission on Environmental Quality (TCEQ).