

Evaluation of CMAQ SOA during CALNEX with Consideration of Volatility Space

Annmarie G. Carlton, K. R. Baker,

T.E. Kleindienst, J.H. Offenberg, M. Jaoui

California Nexus

Roof top of CalTech (Pasadena)

Bakersfield (San Joaquin Valley)

Motivation

CMAQ exhibits a persistent negative bias in OA mass prediction. Community consensus that it is a consequence of 2° processes.

Missing VOCs? More SV products?

Possibly, but even when precursors are perfectly known (e.g., Parikh et al., (2010)) models still fail.

Missing Processes?

Application of theory needs expanding: "Like" into "Like" means polar organic compounds into polar solvents (water) (Parikh et al., 2010; Wayne et al., 2010; Pankow and Barsanti, 2009)

Total carbon comparisons are insufficient to guide *effective* mechanism development. Evaluation of *theory* and *chemical tracers* is critical.

Absorptive-Partitioning Theory

$$K_{P,i} = \frac{C_{aer,i}}{C_{gas,i} TPM} = \frac{1}{p^{\circ}_{L,i}} \left[\underbrace{\frac{N_s \, a_{TSP} \, T \, e^{(Q-Q_v/RT)}}{1600}}_{\text{Surface adsorption}} + \underbrace{\frac{f_{om} \, 760 RT}{MW_{om} \, \zeta_i \, 10^6}}_{\text{organic-phase absorption}} \right]$$

$$K_{om,i} = \frac{C_{aer,i}}{C_{gas,i} M_o} = \frac{760 RT}{(p^{\circ}_{L,i}) MW_{om} \zeta_{i} 10^{6}}$$

Expressed partitioning behavior of each compound as a function of temperature and organic-phase composition

 M_o is the organic-phase mass concentration Notation differs slightly from primary reference

- Ref: Pankow, Atmos. Env. (1994)
- Slide courtesy of P. Bhave

Theory: applied to toluene SOA modeling

CMAQ and GEOS-Chem have multiphase (heterogeneous) SOA processes

Modeling Overview

- May-July 1, 2010 episode
- CMAQ v4.7.1 (N2a)
- CB05 & AERO5
- WRF v3.2 (MCIP v3.6)
- BEIS v3.14
- WRF 2 m temperature and WRF shortwave downward radiation
- 2005v2 NEI anthropogenic emissions for U.S.
- Mexico emissions based on 1999 inventory (Mexico a minimal influence during CalNex).

- Horizontal grid cell size = 4 km
- NX = 236, NY = 317
- Lambert projection centered at (-97,40) with true latitudes 33 and 45
- Domain origin (-2416 km, -832 km)

For additional model details see Kelly et al. Poster

Conclusions

Missing gaps in CMAQ's SOA volatility distribution when CB05 is employed.

Organic mass "aging" (VOC → SV_VOC → SV_OA → LV_OA) assumptions need some re-visiting

- # of carbons in SV species ≠ to parent VOC
- assigned OM:OC ratios should be calculated for individual, representative chemicals

Chemical SOA tracers are underpredicted for all measurable species at 2 CA locations: urban and rural

- Some chemical identity is lost during oligomerization
- Tracers are not conservative or OM:OC is not constant from chamber to field
- Gas phase VOC/SV_VOC precursors mixing ratios are not correct,

Acknowledgements

- James Kelly
- Rich Mason
- Laura Reynolds, Allan Beidler, James Beidler, Chris Allen