Exposure Prediction and Measurement Error in Air Pollution and Health Studies

Lianne Sheppard

Adam A. Szpiro, Sun-Young Kim University of Washington

CMAS Special Session, October 13, 2010

Introduction

- Most epidemiological studies assess associations between air pollutants and a disease outcome by estimating a health effect (e.g. regression parameter such as a relative risk):
 - A complete set of pertinent exposure measurements is typically not available
 - →Need to use an approach to assign (e.g. predict) exposure
- It is important to account for the quality of the exposure estimates in the health analysis
 - Exposure assessment for epidemiology should be evaluated in the context of the health effect estimation goal
- Focus of this talk: Exposure measurement error in cohort studies

Typical Approach for Air Pollution Epidemiology Studies

- 1. Assign (or predict, estimate) exposure as accurately as possible
- 2. Plug in exposure estimates into the disease model; estimate health effects
- Challenge exposure measurement error
 - Health effect estimate is affected by the nature and quality of the exposure assessment approach
 - Health effect estimate may be
 - Biased
 - More (or less) variable
 - Typical analysis does not account for uncertainty in exposure prediction → inference not correct

Measurement Error

- Error in the outcome
 - Standard part of regression
 - · Models don't explain all the variation in health outcomes
 - Explicitly incorporated: $Y = \beta_0 + X\beta_X + \epsilon$
- Measurement error in the exposure
 - Not a routine part of regression
 - Two general classes:
 - Berkson "measure part of the true exposure"
 - Classical "measure the true exposure plus noise"
 - Has an impact on health effect estimates, typically:
 - Berkson unbiased but more variable
 - Classical biased and (more or) less variable
 - Often the exposure measurement error structure will have features
 of both types

Outcome Error Only

"true outcome is model + error"

Outcome error; No measurement error $\hat{\beta}_{x} =$ 5.11, $\hat{\sigma}_{x} =$ 0.066

Classical Measurement Error

"measure true exposure + noise"

No measurement error

$$\hat{\beta}_{\chi} =$$
 5.11, $\hat{\sigma}_{\chi} =$ 0.066

Classical measurement error

$$\hat{\beta}_{x} =$$
 3.50, $\hat{\sigma}_{x} =$ **0.256**

Berkson Measurement Error

"measure part of the true exposure"

No measurement error

$$\hat{\beta}_{x} =$$
 5.11, $\hat{\sigma}_{x} =$ 0.066

Berkson measurement error

$$\hat{\beta}_{\chi} =$$
 5.21, $\hat{\sigma}_{\chi} =$ 0.122

"Plug-in Exposure" Health Effect Estimates

- Typical exposure assignment approaches
 - Time series studies: Daily average of all regulatory monitor measurements in a geographic area
 - Cohort studies: Predicted long-term average concentration for each subject based on a model (kriging, land use regression) or the nearest monitor
- Health effect regression models that ignore exposure assignment approach can be (but aren't always) misleading. Impact depends on
 - Study design
 - Type of study focus on temporal or spatial variability?
 - Alignment of monitoring and subject networks?
 - Sample sizes
 - Underlying exposure distribution
 - Exposure assignment approach and quality
 - Research is needed to define the best criteria

Impact on Time Series Study Results: Average Concentration vs. Personal Exposure

- Measurement error comes from a mixture of sources; some are Berkson and unlikely to cause bias
 - Berkson: Non-ambient source exposure doesn't affect estimates when it is independent of ambient concentration;
 - Classical: Average concentration from multiple representative monitors gives better results (reduction in classical measurement error)
 - Unknown impact: Siting of regulatory monitors, particularly for pollutants with strong spatio-temporal structure
- Differences between health effect estimates in different studies may be driven by variations in population exposures
 - Parameter misalignment: Different health parameter due to replacing exposure with concentration
 - Behaviors affecting population exposure vary by metropolitan areas
- Impact of monitor siting: Spatially homogeneous pollutants are not as sensitive to monitor locations

→ Some components may be very sensitive to monitor siting

References: Zeger et al 2000; Sheppard et al 2005; Sarnat et al 2010

Impact on Cohort Study Results:

Individual Exposure Predictions with Spatially Misaligned Data

- Cohort study disease model relates individual exposure to individual disease outcomes
- Exposure data are "spatially misaligned" in the cohort study setting
 - Spatial misalignment occurs when exposure data are not available at the locations of interest for epidemiology
- Air pollution exposures are typically predicted from misaligned data using
 - Nearest monitor interpolation
 - GIS covariate regression (land use regression)
 - Interpolation by geostatistical methods (kriging)
 - Semi-parametric smoothing
- Measurement error from predicted exposures can be decomposed into two parts:
 - Berkson-like
 - Classical-like

Exposure Surface Prediction

Impact on Cohort Study Results:

Measurement Error from Spatially Misaligned Predictions

- Measurement error structure is complex
 - Not purely classical or Berkson
 - Berkson-like component results from information lost in smoothing (i.e. predictions are smoother than data)
 - Classical-like component is related to uncertainty in estimating the exposure model parameters
 - Reference: Szpiro, Sheppard, Lumley (2010). *Efficient measurement error correction with spatially misaligned data*. http://www.bepress.com/uwbiostat/paper350/
 - → Standard correction approaches are not appropriate
- Measurement error *might be* less of a problem when the exposure is more predictable. Depends on:
 - Good spatial structure in the underlying exposure surface
 - Spatially varying mean structure
 - Longer range (i.e. large scale spatial correlation)
 - Small nugget (not much local variation left over)
 - The availability of data to capture this structure
 - Measurements that represent the exposure variability
 - Comparability of the subject and monitor locations

Health Effect Estimates Example – The Longer the Range the Better the Performance

True exposure		Fitted exposure (R ²)	Bias ²	Variance	Mean square error	Coverage probability of 95% confidence interval
Least predictable (shortest range)		True	0	9	9	0.95
		Nearest	327	23	350	0.03
		Kriging (0)	342	778	1120	0.58
		True	0	31	31	0.95
		Nearest	33	58	91	0.76
		Kriging (.20)	1	734	735	0.74
		True	0	69	69	0.95
		Nearest	30	125	155	0.87
		Kriging (.40)	1	426	427	0.89
Most		True	0	56	56	0.96
Predictable		Nearest	34	105	139	0.85
(longest range)		Kriging (.47)	0	153	153	0.92

Note: Exposure models based on a constant mean model and dependence characterized by a spherical variogram with fixed partial sill (45), no nugget, and varying range (1-500 km)

13

Reference: Kim, Sheppard, Kim (2009) Epidemiology

Exposure Measurement Error –

Correction Approaches for Spatially Misaligned Data

Exposure Simulation

- Use simulated exposure in the health analysis:
 - Generate multiple samples from the estimated exposure distribution
 - Plug into disease model and estimate parameters
 - Average estimates and fix the variance
- Gives biased estimates (Gryparis et al, 2009; Little 1992)
- Reasonable to simulate exposure for risk assessment

Joint Model

- Estimate exposure and disease models jointly
 - Asymptotically optimal
- Practical problems
 - Computationally intensive
 - Published simulation examples haven't worked (Gryparis et al, 2009; Madsen et al 2008)
 - Feedback between exposure and health models can lead to bias
 - Particularly with sparse exposure and rich health data (Wakefield & Shaddick, 2006)

2-Stage Approach

- Predict exposure at subject locations in the first stage
- Correct the disease model estimates for the predicted exposure in the second stage.
 - Parametric bootstrap
 - Parameter bootstrap
 - Szpiro, Sheppard, Lumley (2010).
 Efficient measurement error correction with spatially misaligned data. Available online.

Exposure Measurement Error Correction – Simulation Results

	<u>Bias</u>	<u>SD</u>	<u>E(SE)</u>	<u>Mode(SE)</u>	<u>Coverage</u>
No correction	-0.002	0.027	0.016	0.016	78%
Partial parametric bootstrap ¹	-0.002	0.027	0.023	0.023	91%
Parameter bootstrap	0.001	0.027	0.028	0.027	96%
Parametric bootstrap ²	-0.002	0.027	0.029	0.027	97%

True health effect coefficient: $\beta_X = -0.322$ ¹Partial parametric bootstrap only corrects for the Berkson-like error component ²Parametric bootstrap based on 100 simulations; all others based on 2,000

Exposure Measurement Error – Discussion

- The quality of exposure estimates affects health results
 - Assess:
 - Bias
 - Variance
 - Coverage
 - Also relevant
 - Study design and data structure
 - Monitoring network vs. subject locations
 - Features of the underlying exposure
 - Exposure prediction approach and estimation results
- Measurement error structure is complex and not purely classical or Berkson
- Emerging research findings suggest exposure prediction and health effect estimation should be treated as one problem