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Introduction 
•  Most epidemiological studies assess associations 

between air pollutants and a disease outcome by 
estimating a health effect (e.g. regression parameter 
such as a relative risk): 
–  A complete set of pertinent exposure measurements is 

typically not available 
Need to use an approach to assign (e.g. predict) exposure 

•  It is important to account for the quality of the 
exposure estimates in the health analysis 
 Exposure assessment for epidemiology should be 

evaluated in the context of the health effect estimation goal 
•  Focus of this talk:  Exposure prediction for cohort 

studies 
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Outline 
•  Example: MESA Air 
•  Predicting ambient concentrations 

–  Spatial and spatio-temporal statistical models 
–  Incorporating air quality model output 

•  Evaluating predictions 
–  Focus on temporal/spatial scale needed for health analyses 

•  Lessons learned from one year of CMAQ predictions 
•  Summary and conclusions 



Example: MESA Air Study 
•  Multi-Ethnic Study of Atherosclerosis (MESA) Air Pollution 

Study 
–  Ten-year national study funded by U.S. EPA 

•  Objective 
–  Examine relationship between chronic air pollution exposure and 

subclinical cardiovascular disease progression 

•  Approach 
–  Prospective cohort study with 6000-7000 subjects  

•  6 metropolitan areas (Los Angeles, New York, Chicago, Winston-
Salem, Minneapolis-St. Paul, Baltimore) 

–  Predict long term exposure for each subject 
–  Longitudinally measure subclinical cardiovascular disease 
–  Estimate effect of air pollution on CVD progression 
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Air Pollution Exposure 
Framework 

•  Personal exposure:   
EP  =  ambient source (EA)  + non-ambient source (EN)  

–  EA = ambient concentration (CA) * attenuation (α) 
•  Ambient concentration contributes to exposure both outdoors and indoors 

due to the infiltration of ambient pollution into indoor environments 

–  Ambient exposure attenuation factor:  α = [f o+(1-f o)Finf] 
•  Ambient attenuation is a weighted average of infiltration (Finf), weighted by 

time spent outdoors (f o) 

•  Exposure of interest:  Ambient source (EA) or total 
personal (EP) 
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Exposure Assessment 
Challenge 

•  Need to assign individual air pollution exposures to all subjects  
Predict from ambient monitoring and other data 
–  Focus is on long-term average exposure 
–  Impractical to measure individual exposure for all subjects 

•  Desired properties of prediction procedure 
–  Minimal prediction error 
–  Practical implementation (not too time consuming) 
–  Good properties in health analyses  

•  Prediction approaches for long-term average exposures: 
–  City-wide averages  

•  Seminal cohort studies (6 cities, ACS) focused on variation between cities 

–  Spatial models 
–  Spatio-temporal models 
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Spatial Prediction Modeling 
•  General approach: 

–  Measure concentrations at a (relatively limited) set of monitoring locations 

–  Predict concentrations at subject homes based on these monitoring data 

–  Assume home concentration will be most like measured values at “similar” 
monitoring locations 

•  Similar in terms of proximity and/or spatial covariates 

•  Conditions for spatial prediction to be appropriate 
–  Interested in fixed time-period long-term averages 

–  Monitoring data are representative of the time period of interest  

•  Long-term averages or shorter but representative times 

•  Otherwise, need spatio-temporal predictions 

8 



Spatial Prediction Methods 
•  Nearest monitor assignment 

–  Assign concentration based on nearest monitoring locations 

•  K-means averaging 
–  Average measured concentrations at the K nearest monitoring locations 

•  Inverse distance weighting 
–  Average measured concentrations at all monitoring locations, weighted by distance 

•  Ordinary kriging 
–  Smooth the data by minimizing the mean-squared error 

•  Spline smoothing 
–  Theoretically equivalent to kriging; implementation details different 

•  Land use regression (LUR) 
–  Predict from a regression model using geographic covariates 

•  Universal kriging 
–  Predict by kriging combined with LUR 

9 



Locations of NOx Monitors and Subject 
Homes in MESA Air (Los Angeles)  
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MESA Air NOx Monitoring 
Data in Los Angeles 

AQS 
MESA Air fixed 
MESA Air home outdoor 
MESA Air snapshot 

 # Sites 
20 
5 
84 

177 

 Start date 
Jan 1999 
Dec 2005 
May 2006 
Jul 2006 

 End date 
Oct 2009 
Jul 2009 
Feb 2008 
Jan 2007 

 # Obs 
4180 
399 
155 
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Need For Spatio-Temporal 
Model 

Space-time interaction and temporally sparse data suggest 
a spatio-temporal model to predict long-term averages 
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MESA Air Spatio-Temporal 
Model Inputs 

•  Geographic Information System (GIS) predictors and 
coordinates 
–  Spatial location 
–  Road network & traffic calculations 
–  Population density 
–  Other point source and/or land use information 

•  Monitoring data 
–  Air monitoring from existing EPA/AQS network 
–  Air monitoring from supplemental MESA Air monitoring 
–  Meteorological information 

•  Deterministic air quality model predictions 
–  CMAQ: gridded photochemical model 
–  AERMOD:  bi-Gaussian plume/dispersion model 
–  UCD/CIT air quality model: source-oriented 3D Eulerian model 

based on the CIT photochemical airshed model 
–  CALINE:  line dispersion model for traffic pollution 



MESA Air GIS Covariates 

Need variable selection to avoid overfitting! 15 
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Spatio-Temporal Exposure 
Model 

•                         

•                                                 

–          smooth temporal basis functions derived from data 

–        spatial random fields distributed as  
•  Geostatistical covariance structure with “land use regression” covariates 

for population, traffic, land use, etc. 

–            space-time covariate 

•     
–  Geostatistical spatial structure with simple temporal correlation 

•  Process noise + measurement error 

temporal trends at 
location s + space-
time covariate 

measured concentrations on log scale 

variation from temporal trend (mean 0) 
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Estimation Methodology 

•  Large number of parameters and thousands of 
observations makes estimation challenging 

–  Maximum likelihood estimation based on full Gaussian model 
works, but very computationally intensive 

•  Two approaches improve computational efficiency: 
–  Reduce number of parameters to 

be optimized by using profile 
likelihood or REML 

–  Reduce time for each likelihood 
computation by taking advantage 
of structure of model 
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R Package 
•  MESA Air spatiotemporal model has been efficiently 

implemented in an R package 
–  Johan Lindström, available on CRAN in 1-2 months 

•  So far, used to generate and cross-validate NOx 
predictions in Los Angeles 
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Predicted NOx 
Concentrations 
In Los Angeles: 



Smooth Predicted Long-Term Average 
NOx Concentrations in Los Angeles 
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Validation Strategies 
•  Must do some kind of validation study to test accuracy of predictions at 

locations not used to fit the model 
–  Not sufficient to look at regression R2 (and this is not available for kriging 

anyway) 

•  Ideally test with separate validation dataset not used in model selection 
or fitting 
–  Typically infeasible because want to use all the data  

•  Cross-validation is a useful alternative 
–  Fit the model repeatedly using different subsets of the data and test on the 

left-out locations 

•  Leave-one-out, ten-fold, etc. 

–  No universally best approach to cross validation, but there are some guiding 
principles 

•  Each cross-validation training set should be similar in size to full dataset 

•  Leave out highly correlated locations together 22 



Cross-Validation of Los Angeles 
NOx Predictions 

•  Use cross-validation to assess accuracy of predicting long-term averages 
at subject homes 

–  Modify R2 at home sites so we don’t “take credit” for predicting temporal 
variability  



Initial Assessment of CMAQ for 
Use in MESA Air 

•  Approach: 
–  Initial evaluation to determine how to incorporate 

CMAQ output into our spatio-temporal model 
–  Examine scatterplots, summaries of correlations, and 

smooth trends 
–  Focus on the effect of time scale 

•  Data:   
–  One year (2002) of CMAQ predictions in Baltimore 

•  12 km grid 
•  Interpolated to AQS locations in Baltimore City and greater 

metropolitan area 

–  PM2.5 data at AQS locations 24 



Locations of the AQS PM2.5 
Sites in the Baltimore Area 

25 
AQS sites operating in 2002 



Daily Data:  Interpolated CMAQ 
Predictions vs. AQS 

Red: summer 
Black: spring/fall 
Blue: winter 
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Seasonal Trends:  CMAQ and AQS 

Seasonal 
trends on 
approximately 
monthly time 
scale: 
      AQS 
      CMAQ 

110010043 
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Correlations Between CMAQ and AQS:  
Effect of Temporal Averaging 

Correlations by site:   
Effect of number of days averaged over 

Correlations by model component: 
Impact at each AQS site in Baltimore 



Association of Annual Averages Across 
Sites: CMAQ vs. AQS 

Solid points: 
8 sites in 
Baltimore City 
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Comments on CMAQ for Application to 
the MESA Air Spatio-Temporal Model 

•  Preliminary conclusion:  Unlikely that CMAQ will 
improve the MESA Air spatio-temporal model 
–  Weaker correlation of AQS and CMAQ at longer time scales 
–  Seasonal structures are different 
–  However 

•  To date we have only evaluated one year of CMAQ predictions 
•  There is some spatial correlation between CMAQ and AQS 

annual averages at larger spatial scales 
•  There might be a benefit to including seasonally detrended 

CMAQ predictions 

•  Logistical issue:  The MESA Air model needs air 
quality model predictions for ten years and many 
spatial locations  
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Summary and Discussion 
•  Evaluation of air quality model output for health studies should be 

done in the context of the exposure of interest in the health analysis 
–  Cohort studies:  Long-term average exposure 

•  Multiple options are available for exposure prediction.  Method 
selection should consider: 
–  Data at hand  
–  Prediction goal 

•  All exposure models require validation 
–  Validation should focus on the end use of the predictions 

•  Air quality model predictions have not improved the MESA Air 
spatio-temporal model 

–  Results should be viewed in the context of  the MESA Air study design and data  

•  Use of air quality model output and exposure predictions in health 
studies must also consider the health study design and data 
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