

Spatial-temporal impact of air pollution on human health

Montse Fuentes

fuentes@stat.ncsu.edu

In Collaboration with

E. Kalendra (NCSU), M.L. Miranda (Duke), and B. Strauss (Duke).

Motivation

Recent studies have linked exposure to fine particulate matter $(PM_{2.5})$ and ozone (O_3) to mortality counts (county level).

This study uses a unique spatial data architecture consisting of geocoded North Carolina mortality data for 2001-2002, combined with U.S. Census 2000 data.

In our analysis we work with different levels of aggregation for the mortality data, and different metrics and sources of information for the pollution.

We also take into account distances to roadways and other important covariates.

Our contribution

There is an increased interest in modelling association between mortality counts and pollution monitoring data.

Modelling the exposure surface and estimating exposure might lead to bias in the estimated health effect.

We introduce a model that is easy to implement that can adjust for this bias, without making a distributional assumption for the exposure.

Of considerable interest is potential non-additivity of effects of important co-pollutants.

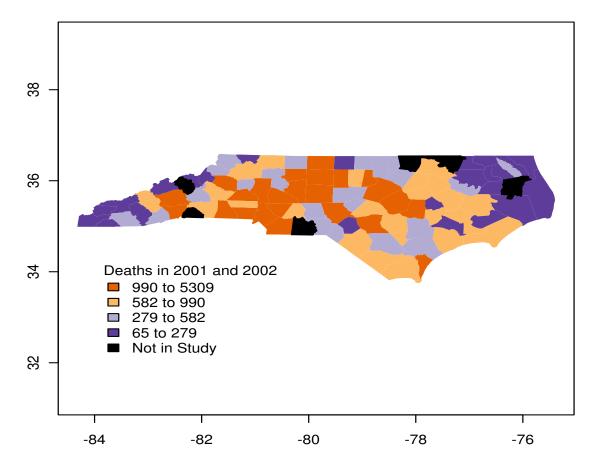
To investigate complex interactions, we introduce an alternative parameterization for $PM_{2.5}$ and O_3 effects that allows a flexible, spatially-varying bivariate surface to characterize joint effects of O_3 and $PM_{2.5}$.

We apply the nonadditive models to other co-variates, i.e. $PM_{2.5}$ and distance to roadways.

Population data:

- Geocoded (lon/lat) mortality data in North Carolina for years 2001-2002.
- Natural deaths.
- Population: > 65 years-old.
- U.S. 2000 Census data.

Figure 1: Number of deaths in NC per county in 2001-2002 (for > 65 years old).



Deaths per County in 2001 and 2002

Weather (from weather stations):

- Daily average temperature.
- Daily precipitation.
- Location based daily pressure.
- Daily Dewpoint.

Exposure data:

- Different metrics:
 - Monitoring data for daily 8-hour max ozone and daily average of $PM_{2.5}$.
 - Output of air quality model (CMAQ) at 12 km resolution.
 - EPA fused data (combining CMAQ with monitoring data).
- Using GIS we obtain distances to primary (interstate and highways) and secondary (state) roads.

Figure 2: Monitoring stations for $PM_{2.5}$.

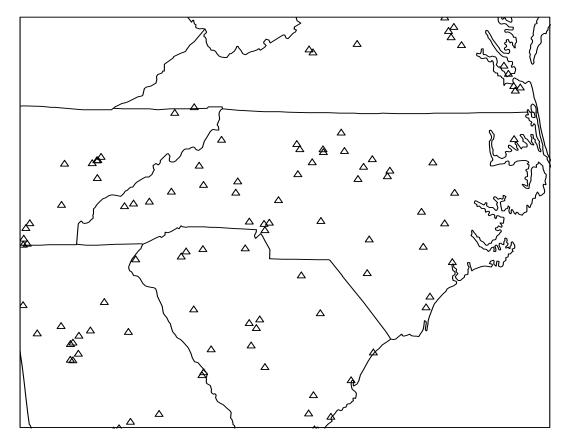


Figure 3: Monitoring stations for ozone.

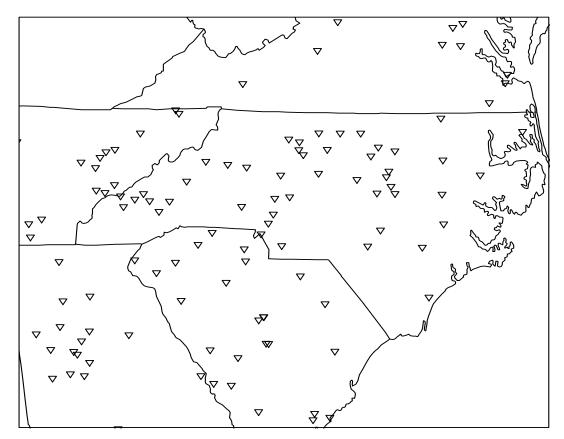
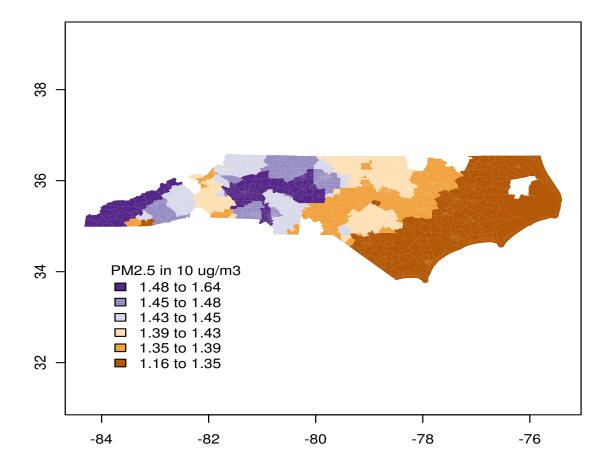


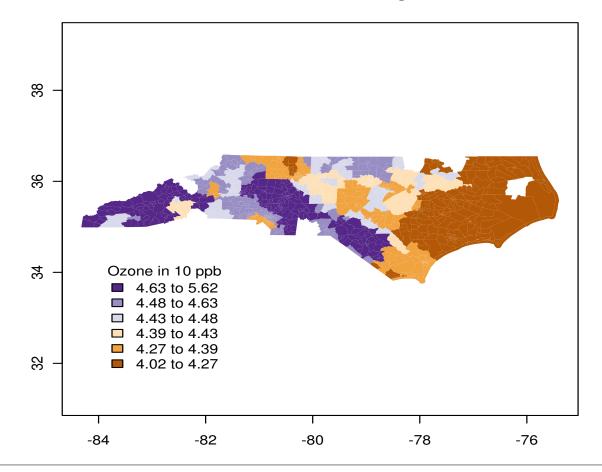
Figure 4: Average of daily $PM_{2.5}$ concentrations in 2001-2002 in NC. Spatial surface based on closest monitoring station to tract centroid.



2 Year PM2.5 Average

2001 - 2002 Monitor Data

Figure 5: Average of daily 8-hour max. ozone concentrations in 2001-2002 in NC. Spatial surface based on closest monitoring station to tract centroid.

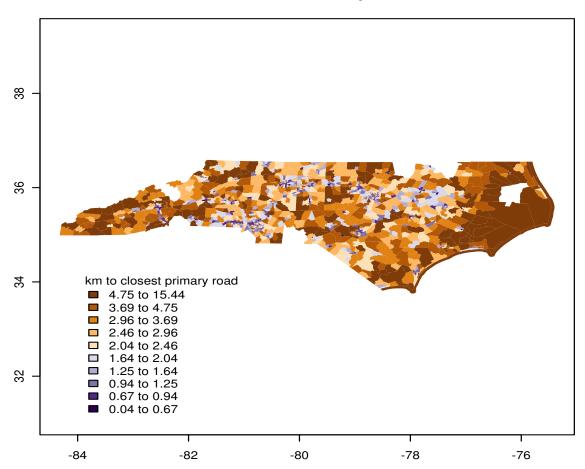


2 Year Ozone Average

Montse Fuentes, NCSU

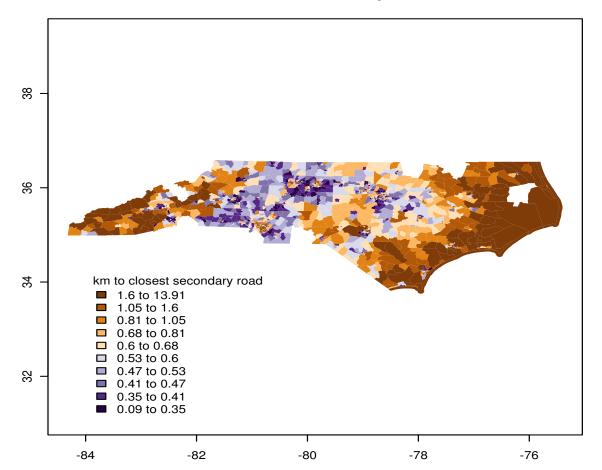
2001 - 2002 Monitor Data

Figure 6: Distance to closest primary roads (km) from tract centroids.



Distance to Nearest Primary Road in km

Figure 7: Distance to closest secondary roads (km) from tract centroids.



Distance to Nearest Secondary Road in km

Effect of aggregating data

Our geocoding of mortality data, allows us to investigate the impact of aggregation, going from models at the individual level to modelling counts of mortality (tract, county, region levels).

Model at individual level

 Y_{itk} : whether an individual *i* in region *k* died day *t*.

 x_{ikt} : exposure data at location s_i (residence of individual i),

 z_{ikt} : other covariates (e.g. weather).

$$Y_{itk}|x_{ikt}, z_{ikt}, \beta \sim Bernoulli(p(x_{ikt}, z_{ikt}, \beta))$$
(1)

where the probability of death for individual i at time t in region k is

$$p(x_{ikt}, z_{ikt}, \beta) = \exp(f(x_{ikt}, z_{ikt}), \beta), \qquad (2)$$

p is usually very small (rare event).

Modelling counts

 Y_{kt} mortality counts in region k.

 N_{kt} population data.

We model mortality counts in region k:

$$E\left[Y_{kt}|x_{kt}, z_{kt}, \beta\right] = N_{kt}q_{kt} \tag{3}$$

where

$$q_{kt} = \frac{1}{N_{kt}} \sum_{i=1}^{N_{kt}} \exp(f(x_{ikt}, z_{ikt}), \beta)$$
(4)

Because N_{kt} is typically large and $p(x_{ikt}, z_{ikt}, \beta)$ is small, the binomial can be approximated with a Poisson distribution.

Using $N_{kt}q_{kt}$ gives the convolution model (Wakefield, 2006)

$$Y_{kt}|x_{kt}, z_{kt}, \beta \sim_{\text{ind}} \text{Poisson}\left\{\sum_{i=1}^{N_{kt}} \exp(f(x_{ikt}, z_{ikt}), \beta)\right\}$$
(5)

The convolution model requires exposure information for every individual in region k at time t.

Approximations of $N_{kt}q_{kt}$ can lead to bias of the estimated parameters. The standard Poisson model for mortality counts using exposure areal averages leads to ecological bias.

Standard Poisson model for mortality counts:

$$Y_{kt} \sim \text{Poisson} \{ N_{kt} \exp(f(x_{kt}, z_{zt}), \beta) \}, \tag{6}$$

where x_{kt} is the average exposure in region k.

Our model for aggregated data

A method to approximate $N_{kt}q_{kt}$ is to use the Taylor expansion.

$$\sum_{i=1}^{N_{kt}} \exp(f(x_{ikt}, z_{ikt}), \beta) = e^{\beta_0} \sum_{i=1}^{N_{kt}} \exp(\beta_1 x_{ikt}).$$
(7)

Instead of making a distributional assumption, we expand the term using a Taylor series approximation.

$$\sum_{i=1}^{N_{kt}} \exp(\beta_1 x_{ikt}) \approx (N_{kt}) \left(1 + \beta_1 \frac{\sum_i x_{ikt}}{N_{kt}} + \frac{1}{2} \beta_1^2 \frac{\sum_i x_{ikt}^2}{N_{kt}} \right).$$
(8)

This leads to the first order approximation

$$\sum_{i=1}^{N_{kt}} \exp(\beta_1 x_{ikt}) \approx (N_{kt}) \exp\left(\beta_1 \frac{\sum_i x_{ikt}}{N_{kt}}\right).$$
(9)

And second order approximation

$$(N_{kt})\exp\left(\beta_1 \frac{\sum_i x_{ikt}}{N_{kt}} + \frac{1}{2}\beta_1^2 \left(\frac{\sum_i x_{ikt}^2}{N_{kt}} - \left[\frac{\sum_i x_{ikt}}{N_{kt}}\right]^2\right)\right).$$
(10)

Instead of computing the computationally expensive sum, we only need to store $\frac{\sum_{i} x_{ikt}}{N_{kt}}$ and $\frac{\sum_{i} x_{ikt}^2}{N_{kt}}$, which is only an increase of one variable compared to the typical Poisson regression.

The estimate of β is computed using a restricted Poisson regression model.

The ecological bias increases with the *population-weighted* sample variance for the exposure (term multiplying β_1^2). This ecological bias is more of an issue for exposure variables with spatial heterogeneous variability.

Standard Poisson model

Standard Poisson model for mortality counts, where we are interested in estimating the effect of pollution.

$$Y_{kt} \sim Poisson\left\{N_{kt}\exp(f(x_{zt}, z_{kt}))\right\}$$
(11)

$$f(x_{zk}, z_{kt}) = \beta_0 + h(t) + ns(TAVG) + ns(PRES) + ns(DPTP)$$

+ ns(Dist. Pri) + ns(Dist. Sec) + $g_k(PM_{2.5}, O_3)$

where h(t) is a temporal trend (4 Fourier components), ns() is natural splines (5 d.f.), TAVG is average daily temperature, PRCP daily precipitation, PRES location based pressure, and DPTP dewpoint. Dist. is the distance to the nearest roadway, with Pri. meaning primary and Sec meaning secondary.

 $g_k()$ is generally additive: $g_k(PM_{2.5}, O_3,) = \beta_1 PM_{2.5} + \beta_2 O_3$

Non-additive models

Additive model:

$$g_k(Pollution) = \beta_1 X_1(k) + \beta_2 X_2(k)$$

Nonadditive model we propose:

$$g_k(Pollution) = g_k(X_1(k), X_2(k))$$

where

$$g_k(a,b) = \sum_{m=1}^M w_m(k)b_m(a,b)$$
$$b = \{b_m\}_{m=1}^M$$

are the two-dimensional basis functions (e.g., thin plate splines, polynomials), and the $w_m(k)$ are spatially-varying coefficients.

Results to compare metrics and levels of aggregation

Comparing the effect of using different metrics for $PM_{2.5}$ and different levels of aggregation, using the standard Poisson model previously presented.

	NC	Region	County	Tract
Monitor	$0.008_{(.007)}[1.2]$	$0.009_{(.006)}[1.5]$	$0.008_{(.006)}$ [1.4]	$0.005_{(.006)}[0.9]$
CMAQ	$0.007_{(.008)}[1.0]$	$0.013_{(.006)}[2.0]$	$0.013_{(.006)}[2.2]$	$0.014_{(.006)}[2.5]$
Fusion	$0.010_{(.007)}[1.5]$	$0.015_{(.006)}[2.5]$	$0.022_{(.005)}$ [4.1]	$0.024_{(.005)}[4.5]$
		- 1 -		

Table 1: Estimated β_{SD} [z-value]. β : percent increase of mortality per increase of 10 units of PM_{2.5}.

Results to study distance to roadways

Analysis at the tract level, using monitoring data. We include distance to nearest roadways, as an additive effect.

$\mathrm{PM}_{2.5}$	$0.005_{(.006)}[0.9]$
Dist Pri	$-0.062_{(.011)}[-5.5]$
Dist Sec	$-0.044_{(.006)}[-7.2]$
O_3	$0.004_{(.003)}[1.4]$
O_3 Dist Pri	$0.004_{(.003)}[1.4]$ - $0.063_{(.011)}[-5.5]$

Table 2: Tract Level. Estimated β_{SD} [z-value].

- The health effects due to the two pollutants ($PM_{2.5}$ and O_3), do not seem to change by adding in the model the distance to primary and secondary roads.
- The distance to primary and secondary roadways seem to be more relevant in explaining mortality, than the monitoring data.
- Possible explanation: Monitored concentrations might not represent near roadway concentrations.

Results for our bias-adjustment framework

We use monitoring data at the county level, to study the impact of our population-based exposure averaging approach (using the first and second order appr.), rather than using the standard linear method with exposure areal averages.

We apply our bias-adjustment method to the $PM_{2.5}$ and dist. to secondary road variables.

We introduce analysis at the tract level as reference (bias is more negligible at that level).

	Est	SD	Ζ
Tract level	0.008	.006	1.4
County level (standard areal aggregation)		.006	1.7
County level (popbased averages, first order appr.)		.006	1.5
County level (popbased averages, second order appr.)		.006	1.5

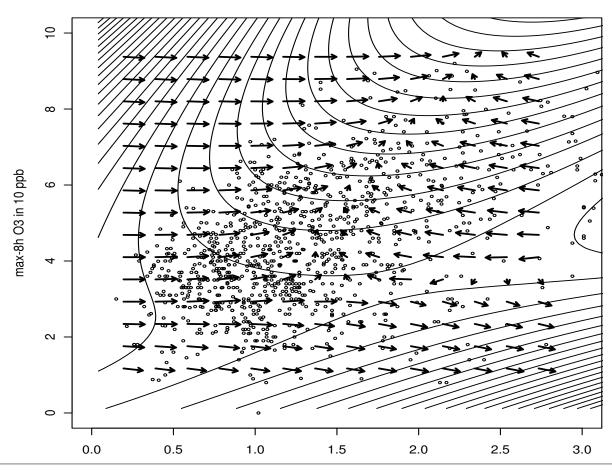
Table 3: Estimated β for PM_{2.5} (% increase in mortality per 10 units increase of PM_{2.5}).

	Est	SD	Z
Tract level	-0.104	0.013	-8.2
County level (standard areal aggregation)		.012	-4.2
County level (popbased averages, first order appr.)		.018	-5.3
County level (popbased averages, second order appr.)		.019	-5.2

Table 4: Estimated β for distance to secondary roads (% increase in mortality per 1 km increase of the dist. to second. road).

- The results from our bias-adjusted model are more similar to the results at the tract level for the distance to secondary (β ~ -.1). The potential bias with the standard model is about 1/2 the magnitude of this health effect.
- The impact of this bias-adjustment framework is more negligible with PM_{2.5} than with distance to roadways, because this variable is less significant and there is less spatially heterogeneity in the PM_{2.5} variance.

Figure 8: **Results for the non-additive model.** Gradient vector of the risk of mortality due to joint exposure to ozone and $PM_{2.5}$ (lag 1). The circles represent the data. The changes in the background contourplot represent .01 change in the actual health effect.

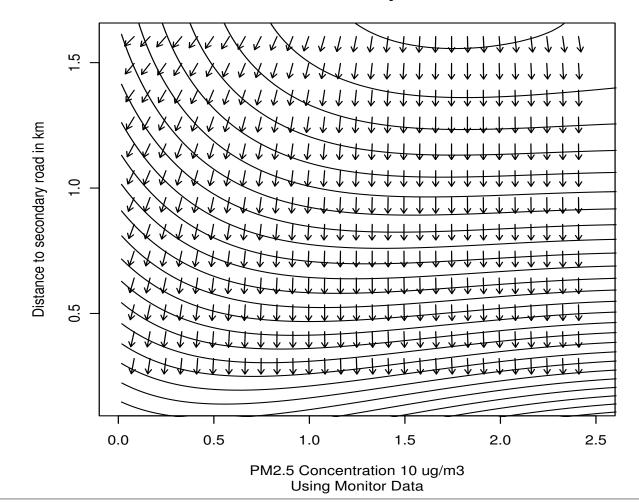


Surface from General Polynomial of order 3

Montse Fuentes, NCSU

PM2.5 Concentration 10 ug/m3 Using Monitoring Data (lag-1)

Figure 9: Gradient of the risk of mortality due to joint exposure to $PM_{2.5}$ and distance to closest secondary road.



Surface from General Polynomial of order 4

Conclusions

The following results from our study, could have a significant impact in air quality regulation, managing and policy:

- There is a significant risk of mortality associated to fine particulate matter and ozone.
- The spatial scale at which the analysis are done matters a lot. Different results at different scales.
- The EPA fused data product (combining CMAQ and monitoring data) gives more power to characterize the risk of mortality due to pollution.
- Monitored PM concentrations might not represent near roadway concentrations. Thus, other variables, such as distance to roadways, might be a better indicator of near roadway exposure.

- Most of the associations between pollution and mortality are done using areal exposure data and mortality counts. It is important to use population-based aggregation methods, like the one presented here, to avoid bias in the estimated health effect.
- Co-Pollutants health effects seem to be non-additive. Additive methods could result in misleading results, due to interactions.