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New Layer-Adjusted Advection Steps Determination New Mass-Consistent Vertical Advection Layer Collapsing Issues
The operator-splitting paradigm used in CMAQ may cause intermediate negative concentrations to The mass-conserving advection scheme in CMAQ uses an upwind donor cell method for the vertical component, which is known to be first
be generated for highly divergent wind fields in the horizontal advection process. Theoretically, order numerically diffusive. We have implemented a higher-order, less diffusive scheme that adjusts the diagnosed mass fluxes using the In order to reduce computational time and output data sizes in CMAQ, a technique can be
these negative concentrations would then subsequently be resolved in the vertical advection Piecewise Parabolic Method (PPM). used in MCIP which takes generated 34 layer meteorology fields, for example and reduces
algorithm. Situations have occurred where a solution cannot be found and the model terminates In the current version (informally called “yamo,” after Bob Yamartino) the rediagnosed vertical velocities, V.are calculated using: them to “equivalent” 14 layer fields for use in CMAQ, thereby reducing CPU time and other
abnormally. The negative concentrations occur because the horizontal advection extracts more f computer resources. To a certain extent, this procedure destroys consistency between the
mass than is available in a grid cell (see Figure 1). This is caused by using an advection step that fi = (I’M - I )D%ft + fi—l; Vigg = /,_ , V= O; fO =0 meteorology variables, and for applications such as the long-range transport of pollutants,
IS too large. _ T It Is not recommended. Figure 7 shows a comparison of the layer structure for a typical
AT eETES e ecvesien e s besse an sateiing e Couramn=E e i emy (CEL) Where, in the |, layer, r,is the met density, /+is the transported density, DSis the vertical grid cell spacing, and dtis the time step. collapsing from 34 to 14.
stability criterion. However the CFL-condition safe advection step does not consider the issue Using these velocities, the concentrations, including 75 are vertically advected. If necessary, the vertical velocities are adjusted to keep the
posed by wind fields with high divergence regions. CFL < 1, and the concentrations are recalculated.
One possib|e solution is to g|0ba||y set a smaller value for the maximum allowable Synchronization In the new version (informally called “yamop”). the VElOCity IS further adeSted by the ratio of the upWind fluxes ( fU) to the PPM calculated sigma levels at top face . . s
step. However, this approach results in much longer run times, in effect being penalized by a fluxes ( fP). This step Is repeated, if necessary, until the differences between fU and fPare less than a small tolerance. Then the romg Sm===zssms=se- . pproxinate Layer Heights
relatively small number of occurrences of high divergence in the wind fields. concentrations are advected using PPM with the final recalculated vertical velocities. o i
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A new method has been developed in which the advection time steps calculation has been modified

to include satisfying a horizontal divergence criterion as well as the CFL condition. Comparison of the rediagnosed vertical velocities with the WRF velocities in Figure 3. shows good agreement up to the top layer. The

excess or deficit mass is adjusted up through the layers with the topmost serving as a kind of reservaoir.
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Required: | hdiv=r—+—» "4+ = "1y hdivdr<1
Tx Ty DX Dy The more numerically diffusive nature of the standard “yamo” compared with the new “yamop” can be seen in Figures 4 and 5, where the As in the previous section (“New Mass-Consistent Vertical Advection”), experiments were run
_ _ _ _ cross section in Figure 5 is the same as in Figure 3. with two types of tracers:
Figure 1. Schematic of Horizontal Advection « Tracer species for mass transport (TRN)

ADY_14 Tracer Profiles for Cell ¢135.21% ADY_14 Tracer Profiles For Cell 135,217

transport = advection + diffusion + dry dep + clouds + wet dep

(The dry deposition velocity was set to the value for O3)
e Tracer species for advection only (ADV)

Advection/Synchronization Step Algorithm

1. Set ATOP

_  Synchronization step = advection step at least up to this level These tracer species were initialized to 1.0 only in the top layers, including the boundary

_ _ _ 43 h 591 h concentrations. The initial concentrations were set to zero elsewhere. For example,

— From environment variable or default sigma level = 0.7 afterosutt'frt . Sfter S%l;rr% . _— TRN_34 was set to 1.0 in layer 34 and 0.0 elsewhere, TRN_33 was set to 1.0 in layer 33,
2. Find max U/Dx in lower layers up to ATOP and determine a trial, max advection step. ) ) o} - etc. These were all run with the new “yamop.” The meteorology used was a 34 layer July

gt7t2at satisfies an adjusted Courant-Friedrichs-Lewy condition (ACFL): Udt/Dx < | 21-26, 2006 USGS 12 Km CONUS and 14 layer collapsing in MCIP.
3. Set the synchronization step = dt for each layer up to ATOP 4 Figures 8 and 9 describe some layer one results of concentrations and dry deposition

—  Keep the synchronization step between 60 and 720 sec g 2 - with tracers initialized in the top layers. As can be seen, a significant amount of mass

If th hronizati . hould be < 60 _ i i the ACFL . set it has migrated from the top to layer one in the 14 layer run as compared to the 34 layer
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to 60 and adjust dt to satisfy the ACFL and evenly divide the synchronization step

Tracer Fraction at July 2, 2001 19 Chour 437 Tracer Fraction at July 10, 2001 05 Chour 2210

4. For layers above ATOP, the same synchronization step is used, but dt could be

decreased to satisfy the ACFL Figure 4. Vertical Profiles of Advection-Only Tracer Species Initialized to 1 in the Top — .
In each layer above ATOP, find max U/Dx and if necessary, adjust dt to satisfy the 36 Km, 148x112x14, July 1-14, 2001, Grid Cell 135,21 Top 4 layers of 34 corresponding Top layer of 14 collapsed
ACFL and evenly divide the synchronization step ’ ’ : ’ > ? to top collapsed layer 14 from 34 layer met
5. For all the layers, find the maximum horizontal divergence, hdiv and adjust dt if " *
hdiv dt > 1 by halving dt yamo yamop yamo yamop Layer 1 1000#*max(ADV _31n+ADV _32n+ADV_33n+ADV 3¢ Layer 1 1000*max{(ADV_14b)
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Figure 5. Profiles of Advection-Only Tracers thru Lower FL for Two July 2001 Selected Hours
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£ o These results have a significant effect on surface level concentrations, and consequently also on dry deposition, e.g. as seen in Figure 6. Top 4 layers of 34 corresponding Top layer of 14 collapsed
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Figure 2. Comparing the New Algorithm vs. the Standard Method Figure 6. 24 Hour Accumulated Dry Deposition of Transport Tracer Species Initialized to 1.0 in the Top Layer —
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