Adjoint sensitivity analysis of PM_{2.5} sources: constraining NH₃ emissions

Daven K. Henze

10/19/09

Mechanical Engineering University of Colorado at Boulder

Collaborators

Mark Shepard, Karen Cady-Pereria,

Ming Luo, Reinhard Beer, TES team

Rob Pinder, John Walker

NASA GSFC: NCCS NASA JPL: SCC

Environmental impacts NH₃

Estimated N deposition from NHx, Dentener et al. (2006).

Denman et al. (2007), *IPCC*: NH₃ emissions to double by 2050.

Galloway et al. (2008), *Science:* Importance of atmospheric NHx transport

Schlesinger (2009), PNAS: a 46 Tg gap in N budget?

TES: remote sensing of NH₃

"covers" globe in 16 days

Footprint size:

Vertical profile yields ~1 DOF near 900 hPa

Beer et al., 2008

Inverse modeling: NH₃

Sum changes to NH_3 over U.S., compare to other inverse modeling (Gilliland et al., 2006) and bottom up (Pinder et al., 2006)

NH_3 emissions variability and uncertainty: Beusen et al. (2008)

Global animal NH₃ emissions

Source types

- housing mixed
- housing pastoral
- grazing mixed
- grazing pastoral
- spreading cropland
- spreading grassland
- fertilizer cropland
- fertilizer grassland

Model sensitivity

Model: estimates, c_i , and parameters, p_i

but it is generally much too large to calculate.

Forward sensitivity

Adjoint sensitivity

4D-Var with GEOS-Chem Adjoint Model

Forward model v6-02-05 (*Bey et al.*, 2001; *Park et al.*, 2004)

All included in adjoint (Henze et al., 2007)

Calculates sensitivity of single model response w.r.t. all model parameters in $t = 3 \times t_{forward}$

Testing the Adjoint Model: Gradient Check

Check gradient using finite difference calculation

$$\lambda \approx \frac{J(\sigma + \delta \sigma) - J(\sigma - \delta \sigma)}{2\delta \sigma}$$

J = model response

 $\sigma =$ control parameter (emissions)

$$\lambda = adjoint sensitivity$$

Component-wise analysis affords domain wide points-ofcomparison (e.g., Hakami et al., 2007)

Adjoint model validation

Sensitivity of nitrate aerosol w.r.t ammonia emissions, 1 week, all processes other than horizontal transport Potential for further constraints: TES coverage for 2 weeks in July 2005

data selection: lat = [30.,45.], lon = [-110, -90.]; total number of profiles: 115

Adjoint sensitivities of modeled NH₃ retrievals

Sensitivities show the origins of the NH_3 that eventually will be "observed" by TES

Sensitivity of TES observation in the track highlighted on previous slide to NH₃ emissions from the week prior

Inverse Modeling using Adjoint Model

Inverse Modeling using Adjoint Model

Inverse modeling tests with different obs

Using TES NH3

Using both $\sigma = ln(p/p_a) \stackrel{-1.00}{-1.00} \stackrel{-0.33}{-0.33} \stackrel{0.33}{-1.00} \stackrel{1.00}{-1.00}$ Initial Guess

Ongoing efforts

- Model transport bias use GEOS 3 /4 / 5 met fields
- Intercomparison of TES / in situ obs / CMAQ
- Retrieval bias
 - inversion that starts with doubled emissions

Final Remarks

- Remote sensing of NH_3 provides valuable constraints
- Multiple types of gas and aerosol observations required to constrain $\rm NH_3$ emissions
- Adjoint approach spreads information from NH_3 observations across wide domain
- How well can we constrain magnitudes vs locations? Are we aliasing for bi-directional flux?

the end

Satellite: indirect observations

Arriving at an NH_3 "observation" is an inverse problem itself.

- ill posed (multiple atmospheric states look alike)
- constraints required

Satellite products are a mix of measured and modeled quantities.

- model estimates used for initial profile
- profile scaled to match observations
- influence of model estimate can be removed

Global modeling support of NH₃ retrievals

Retrieval tests: simulated NH₃

- 1. Simulate NH3 from a doubled emissions model run
- 2. Model what TES would see if "doubled" was truth
- 3. Starting from non-doubled run, can truth be recovered?

Validating TES NH₃ with surface observations

Standard overlap with North Carolina CAMNet sites

Validating TES NH₃ with surface observations

NH₄⁺ monitoring

CASTNet

STN: another 200 sites

NH₃ Monitoring Sites

EPA's new AMoN sites (Gary Lear)

New NH₃ observations

GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L09801, doi:10.1029/2008GL033642, 2008

First satellite observations of lower tropospheric ammonia and methanol

Reinhard Beer,¹ Mark W. Shephard,² Susan S. Kulawik,¹ Shepard A. Clough,³ Annmarie Eldering,¹ Kevin W. Bowman,¹ Stanley P. Sander,¹ Brendan M. Fisher,¹ Vivienne H. Payne,² Mingzhao Luo,¹ Gregory B. Osterman,¹ and John R. Worden¹

Why top-down constraints?

NH₃ inverse modeling: Gilliland et al.

Observations: wet $NH_x = aerosol NH_4^+ + gas NH_3$

Method: Kalman filter (BF) to adjust monthly nationwide scale factors

Results:

Gilliland et al., 2003; Gilliland et al., 2006

Measures sulfate and nitrate.

Inverse modeling: anthro NH₃ emissions

- scaling is spatially variable
- scaling generally reductions
- some increases
- Each month treated separately
- reduction in RMSE $\approx 40\%$

Inverse modeling: assessing the solution

Dependence on inverse modeling assumptions:

- error covariance matrices
- regularization

Estimated uncertainty of solution

- approximate inverse hessian
- std error and correlations

Compare to other studies

- inverse modeling
- bottom up inventories

Compare to NH₃ observations
Inverse modeling: variable constraints

Repeat inversions with different emissions error estimates:

 NH_3 , and to lesser extent, NO_x , emissions estimates fairly invariant

Inverse: comparison to CASTNet NH₄⁺

Air Pollution: Continental PM

EPA AIRNow

MODIS (TERRA)

(smog blog, NASA's visible earth)

September 11, 2005

Secondary inorganic aerosol formation

Ansafferativeness1992, wester and chemical variability

Why study NH₃ emissions?

Health impacts of PM2.5, air quality control

Environmental impacts

A large source of uncertainty

GEOS-Chem vs IMPROVE: nitrate

nitrate problematic: Park et al., (2004,2006), Liao et al. (2007), Pye et al. (2008)

GEOS-Chem vs IMPROVE: sulfate

Inverse modeling: reduction in error

$$\frac{\partial J}{\partial Hc} = (Hc - c_{obs})^T \mathbf{S}_{obs}^{-1}$$

- #'s in corner are min/max of forcing
- Each month treated separately
- reduction in RMSE
 ≈ 40%

Importance of studying NH₃ emissions

PM2.5

- Itself leads to NH_4^+ , 10-20% of $PM_{2.5}$ mass concentration
- Governs formation of NO_3^- , which can be 20-30% in winter

PM2.5 NAAQS Regulations

- Not a presumptively regulated species, but can be very efficient (Pinder et al., 2007; Henze et al., 2008)

- Can be regulated in place of SO₂ or NO₂

Ecosystem impacts

- 11% of worlds natural vegitation impacted by N dep (Dentener et al., 2006)

- N dep will increase 10-40% near NH_3 sources in U.S. by 2020 (Pinder et al., 2008)

Very large source of uncertainty

- estimating U.S. inorganic $PM_{2.5}$ levels (Yu et al., 2005; Simon et al., 2008)

- global N dep. (Sutton et al., 2007)

Inverse modeling: impact on profile estimates compared to pseudo retrieval. After only 4 iterations (would usually do about 20)

retv_vars.2960_0457_003.cdf, (32.99, -93.2), 2005/07/12 19:31 UTC

 NH_3 [ppb]

Inverse modeling: cost function

Define a cost function (want to minimize):

$$\mathcal{J} = \frac{1}{2} \sum_{\mathbf{c} \in \Omega} (H\mathbf{c} - \mathbf{c}_{obs})^T \mathbf{S}_{obs}^{-1} (H\mathbf{c} - \mathbf{c}_{obs}) + \frac{1}{2} \gamma_r (\boldsymbol{\sigma} - \boldsymbol{\sigma}_a)^T \mathbf{S}_a^{-1} (\boldsymbol{\sigma} - \boldsymbol{\sigma}_a)$$

"error" "penalty term"

where

- c = Model predictions
- Ω = Domain of observations
- S^{-1} = Error covariance matrices
- γ_r = Regularization parameter
- $oldsymbol{\sigma}$ = free parameters, $oldsymbol{\sigma}=ln$

$$\left(\frac{\text{emission}}{\text{emission}_{a}}\right) =$$

 $\mathbf{S}_a = 100\% \text{ for NH}_3$ = 30% for NO_x $) = 10\% \text{ for SO}_x$

 $S_{obs} = 30\%$

 σ_a = initial guess of parameters (= 0)

Inverse modeling: minimization

Posterior Error Covariance Estimates

Certainty ~ curvature at minimum

Can estimate inverse Hessian(J) by tracking the minimization

NH3 emissions uncertainty

GEOS-Chem vs IMPROVE: nitrate

Inverse Modeling using Adjoint Model

Inverse modeling: other NH₃ emissions

In(opt/prior)

 scaling results from product of adjoints with prior emissions estimates

 reductions affect anthropogenic sources more than natural sources

results across sectors are correlated

Can effectively distinguish between source sectors

Sensitivities of various cost functions

Sensitivities with respect to anthro NH3 emissions:

Why is the sensitivity positive in one spot?

retv_vars.2945_0983_003.cdf, (36.4, -96.3), 2005/07/05 08:23 UTC

 NH_3 [ppm]

Resolution issue? Retrieval limitation?

Other locations perform better

retv_vars.2960_0457_003.cdf, (32.99, -93.2), 2005/07/12 19:31 UTC

NH₃ [ppb]

Other locations perform better

retv_vars.2960_0457_003.cdf, (32.99, -93.2), 2005/07/12 19:31 UTC

"optimized" scaling factors

Scaling for other inventories

Anthro emission scaling after 6 iterations, J=J(**BOTH**)

NH₃ inverse modeling: Mendoza-Dominguez et al. (2001)

Observations: $PM_{2.5}$ (speciated and total), gas precursors (NO_x , VOCs, SO_2)

Method: Kalman filter (DDM) to adjust single domain-wide scale factors

Results:

NH₃ emissions scaling factors: - May 22-29, 1995: 0.59 - July 09-19, 1995: 0.59

Modeling domain

Air Pollution: PM_{2.5}

90 million people live in counties which are in exceedance of NAAQS for $PM_{2.5}$ of 15 µg/m³ (annual average). (*EPA*, 2003)

Air Pollution: PM

Cardiovascular disease, inhibited lung development, premature mortality *Pope*, (2000); *Pope et al.,* (2002); *Gauderman et al.,* (2004)

Air Pollution: PM_{2.5} Composition

Inverse modeling: additional considerations

How does solution depend upon initial error estimates?

$$\mathcal{J} = \frac{1}{2} \sum_{\mathbf{c} \in \Omega} (H\mathbf{c} - \mathbf{c}_{obs})^T \mathbf{S}_{obs}^{-1} (H\mathbf{c} - \mathbf{c}_{obs}) + \frac{1}{2} \gamma_r (\boldsymbol{\sigma} - \boldsymbol{\sigma}_a)^T \mathbf{S}_a^{-1} (\boldsymbol{\sigma} - \boldsymbol{\sigma}_a)$$

vary "parameters" of the inversions

Questions

What do current network observations directly tell us about NH_3 emissions?

- Not enough

How can indirect observations and modeling be used to constrain NH₃ emissions estimates?

How do emission estimates affect emissions mitigation strategies?

What new measurements required?

Questions

What do current network observations directly tell us about NH₃ emissions?

How can indirect observations and modeling be used to constrain NH_3 emissions estimates?

How do emission estimates affect emissions mitigation strategies?

What new measurements required?

Inverse modeling and data assimilation

Using observations to constrain emissions is an inverse problem.

In data assimilation, models and measurements are combined to create an optimal estimate of the state of the system

Questions

What do current network observations directly tell us about NH₃ emissions?

How can indirect observations and modeling be used to constrain NH₃ emissions estimates?

- can spatial variability be improved?

How do emission estimates affect emissions mitigation strategies?

What new measurements required?

Inverse Modeling: 4D-Var

4D Variation Data Assimilation (Kalnay, 2003):

- Optimize parameters at resolution of forward model
- Forward model equations are strong constraints
4D Variation Data Assimilation (Kalnay, 2003):

- Optimize parameters at resolution of forward model
- Forward model equations are strong constraints

Applications with GEOS-Chem adjoint:

- emissions estimates using remote sensing
 - MOPITT CO (Kopacz et al., 2008)
 - SCIAMACHY SO₂, NO₂ (C. Lee, C. Shim, Q. Li, R. V. Martin)
 - TES O_3 (K. Singh, A. Sandu, K. Bowman)
- NH₃ emissions estimates using surface obs. of sulfate and nitrate (IMPROVE)

Adjoint sensitivity

Method for calculating sensitivity of a single, scalar model response with respect to numerous (i.e., 10⁶) model parameters that is very computationally efficient:

time(adjoint model) = 3 * time(forward model)

Questions

What do current network observations directly tell us about NH₃ emissions?

How can indirect observations and modeling be used to constrain NH₃ emissions estimates?

How do emission estimates affect emissions mitigation strategies?

What new measurements required?

Questions

What do current network observations directly tell us about NH₃ emissions?

How can indirect observations and modeling be used to constrain NH₃ emissions estimates?

How do emission estimates affect emissions mitigation strategies?

What new measurements required?

Collaborators

Thanks to:

Mark Shepard, Karen Cady-Pereria,

Ming Luo, Kevin Bowman, TES team

Rob Pinder, John Walker

NASA GSFC: NCCS NASA JPL: SCC

Additional projects

Assessing long-range influences on local air quality.

ClimateWorks: optimizing energy strategies to minimize global warming potential of aerosols.

Additional projects

WRF-Chem / Var: how can chemical data assimilation improve weather and air quality forecasts?

Directions

Emissions inverse modeling tests

- simulate atmospheric NH₃ field
- simulate TES NH₃ observations
- can inverse model recover "true" emissions?

Air Pollution: Regional

Inverse modeling: uncertainty estimates

Inverse Hessian (*IH*) estimated by tracking progression towards minimum

Inverse modeling: uncertainty estimates

Correlation of emissions between species, same location

Adjoint modeling applications

Depending on "model response," can be used for:

Sensitivity analysis: quantifying influence of uncertain model parameters (emissions, reaction rates, ...) Response = Average concentrations of X in location Y...

Inverse modeling: using large data sets, optimizing parameters on resolution commensurate with forward model.

Response ~ *sum(model* – *obs)*²

Attainment studies: assessing the effectiveness of emissions changes on an air quality *Response = total amount of nonattainment*

Adjoint modeling: History

From principles of functional analysis (Hilbert)

Used extensively for optimal control problems (Lions, 1971)

- nuclear reactor design (classified?!)
- oceanography (Tziperman and Thacker, 1989)
- meteorology (Derber, 1985)
- aeronautics (Giles and Pierce, 2000)

Adjoint modeling: History

From principles of functional analysis (Hilbert)

Used extensively for optimal control problems (Lions, 1971)

- nuclear reactor design (classified?!)
- oceanography (Tziperman and Thacker, 1989)
- meteorology (Derber, 1985)
- aeronautics (Giles and Pierce, 2000)

Atmospheric chemistry

- proposed for tracer analysis (Marchuk, 1974)
- stratospheric chemistry (Larry et al, 1995)
- tropospheric chemistry (Elbern and Schmidt, 1999)

Adjoint modeling: History

From principles of functional analysis (Hilbert)

Used extensively for optimal control problems (Lions, 1971)

- nuclear reactor design (classified?!)
- oceanography (Tziperman and Thacker, 1989)
- meteorology (Derber, 1985)
- aeronautics (Giles and Pierce, 2000)

Atmospheric chemistry

- proposed for tracer analysis (Marchuk, 1974)
- stratospheric chemistry (Larry et al, 1995)
- tropospheric chemistry (Elbern and Schmidt, 1999)

Aerosols

- box model microphysics (Henze et al., 2004; Sandu et al., 2005)
- black carbon (tracer) (Hakami et al., 2005)
- coupled thermodynamics and chemistry (Henze et al., 2007)
- AOD (offline chemistry) (Dubovik et al., 2008)

4D Variation Data Assimilation (Kalnay, 2003):

- Optimize parameters at resolution of forward model
- Forward model equations are strong constraints

4D Variation Data Assimilation (Kalnay, 2003):

- Optimize parameters at resolution of forward model
- Forward model equations are strong constraints

Applications with GEOS-Chem adjoint:

- Top down NH₃ emissions estimates using surface obs. of sulfate and nitrate (IMPROVE)
- Top down emissions estimates using remote sensing
 - MOPITT CO (Kopacz et al., 2008)
 - SCIAMACHY SO₂, NO₂ (C. Lee, C. Shim, Q. Li, R. V. Martin)
 - TES O₃ (K. Singh, A. Sandu, K. Bowman)
- Potential for combining aerosol and gas-phase obs.

4D Variation Data Assimilation (Kalnay, 2003):

- Optimize parameters at resolution of forward model
- Forward model equations are strong constraints

Applications with GEOS-Chem adjoint:

- Top down NH₃ emissions estimates using surface obs. of sulfate and nitrate (IMPROVE)
- Top down emissions estimates using remote sensing
 - MOPITT CO (Kopacz et al., 2008)
 - SCIAMACHY SO₂, NO₂ (C. Lee, C. Shim, Q. Li, R. V. Martin)
 - TES O₃ (K. Singh, A. Sandu, K. Bowman)
- Potential for combining aerosol and gas-phase obs.

Adjoint modeling applications

Depending on "model response," can be used for:

Sensitivity analysis: quantifying influence of uncertain model parameters (emissions, reaction rates, initial conditions, ...)

Inverse modeling (Data Assimilation): using large data sets, optimizing parameters on resolution commensurate with forward model

Attainment studies: assessing the effectiveness of emissions abatement on an air quality

AQ Attainment

Consider a representative metric of PM_{2.5} air quality,

$$J = \frac{1}{2} \sum MAX[(inorganic PM_{2.5})_{24h} - 10\mu g/m^3, 0]^2$$

Calculate the sensitivity of this metric w.r.t. $PM_{2.5}$ precursor emissions, E.

Map adjoint sensitivities:

"Control effectiveness" = fully normalized sensitivities $\frac{\partial J}{\partial E} \times \frac{E}{J} \times 100\% \approx \frac{\triangle J [\%]}{\triangle E/E}$

Spatial and chemical variability in effectiveness

AQ Attainment: sector specific influences

$\chi_m =$	$\left(- \left \sum_{i} \lambda_{p_{i,m}} \right \right)$	$\sum_{i} p_{i,m}$	> 100%
	$\left(\overline{\left \sum_{i,m} \lambda_{p_{i,m}} \right } \right)$	$\overline{\sum_{i,m} p_{i,m}}$) ~ 10070

Emission sector	January	April	July	October
SO_x surface	-11	-14	-11	-12
SO_x stack	16	17	13	13
SO_x shipping	-4	-2	-2	-1
$\rm NH_3$ anthropogenic	-10	-11 -16		-23
$\rm NH_3$ natural	9	11 12		14
$ m NH_3$ biomass burning	-18	-9	-3	0
$\rm NH_3$ biofuel	18	9	8	10
NO_x surface	-2	-4	0	-6
NO_x stack	13	11	26	14
NO _x lightning	-6	-5	-19	-6
NO_x soil	-4	-2	-8	-2

- m = sector
- i = location
- p = emission
- λ = sensitivity

More than 25% of the influence of SO_x emissions on U.S. inorganic $PM_{2.5}$ comes from emissions outside the U.S.

AQ Attainment: long-range influences

Table shows the total influence of each sector (Total) and the percent of that total from each spatial domain on *J*. Sectors with largest influence are highlighted.

Emission sector	Total sensitivity	Percent from each region			
		U.S.	Canada	Mexico	ROW
SO_x surface	11.1	57.8	8.2	23.9	10.1
SO_x stack	30.1	75.1	16.7	3.4	4.7
SO_x shipping	2.0	67.9	6.9	6.4	19.9
SO_x biomass burning	0.2	16.2	1.1	77.3	5.4
SO_x bio fuel	0.03	2.9	25.4	36.1	35.6
NH ₃ anthropogenic	19.6	90.0	6.0	2.3	1.7
$\rm NH_3$ natural	9.2	89.4	8.4	0.1	1.3
$\rm NH_3$ biomass burning	0.6	60.1	2.3	33.3	3.1
NH ₃ biofuel	3.48	95.4	3.9	0.4	0.2
NO_x surface	6.7	84.4	5.3	8.3	2.0
NO_x stack	2.7	97.7	1.1	0.4	0.8
NO _x lightning	0.1	68.3	1.1	24.3	6.2
NO_x soil	0.7	65.3	4.1	28.8	1.7

Final comments on adjoint sensitivities

Disadvantages

sensitivities ≠ source attribution

Advantages

- Computational efficiency
- No perturbation to forward model
 - sensitivities around current model state
 - relevant for policy (+/- 10-30% Δ emission)
- Models can be first conditioned to observations using 4D-Var
- Estimates of emissions influence side-by-side with estimates influence of other parameters

Towards actual decision making activities

Consider additional observational constraints

- combine remote sensing with surface observations
- gas- and aerosol-phase

Testing the Adjoint: single processes, 1 week

Testing the Adjoint: single processes, 1 week

AQ Attainment

Consider a representative metric of PM_{2.5} air quality,

$$J = \frac{1}{2} \sum MAX[(inorganic PM_{2.5})_{24h} - 10\mu g/m^3, 0]^2$$

Calculate the sensitivity of this metric w.r.t. $PM_{2.5}$ precursor emissions, E.

"Susceptibility" = semi normalized sensitivities

$$\frac{\partial J}{\partial E} \times \frac{100\%}{J} \approx \frac{\Delta J[\%]}{E[molec/cm2/s]}$$
"Control effectiveness" = fully normalized sensitivities

$$\frac{\partial J}{\partial E} \times \frac{E}{J} \times 100\% \approx \frac{\Delta J[\%]}{\Delta E/E}$$

AQ Attainment: April

Discrete Adjoints (general)

Consider a discrete governing equation that propagates the vector of concentrations from time step n to step n+1:

$$\mathbf{c}^{n+1} = F^n(\mathbf{c}^n, \mathbf{p}), \quad \mathbf{c}^n = [c_1^n, \dots, c_k^n, \dots, c_K^n]^T \quad \text{Concentrations of species } k$$
$$p = [p_1, \dots, p_m, \dots, p_M] \quad \text{Parameters (emissions)}$$
$$J(\mathbf{c}, \mathbf{p}) = \sum_{n=1}^N g^n(\mathbf{c}^n) \text{ is a model response; we are interested in sensitivity w.r.t. parameters, } \nabla_{\mathbf{p}} J.$$

1. Define the local Jacobians:

 $\frac{\partial \mathbf{c}^{n+1}}{\partial \mathbf{c}^n} = \frac{\partial F^n(\mathbf{c}^n)}{\partial \mathbf{c}^n} \equiv \mathbf{F}_c^n, \quad \frac{\partial \mathbf{c}^{n+1}}{\partial \mathbf{p}} = \frac{\partial F^n(\mathbf{c}^n)}{\partial \mathbf{p}} \equiv \mathbf{F}_p^n$

2. Define the adjoint variable:

$$\lambda_c^n = \nabla_{\mathbf{c}^n} J = \sum_{n'=n}^N \frac{\partial g^{n'}}{\partial \mathbf{c}^n}$$

3. Expand the RHS of (2) using the chain rule

$$\lambda_c^n = \sum_{n'=n+1}^N \left(\prod_{n''=n}^{n'-1} (\mathbf{F}_c^{n''})^T \right) \frac{\partial g^{n'}}{\partial \mathbf{c}^{n'}} + \frac{\partial g^n}{\partial \mathbf{c}^n}$$

4. Solve iteratively (& backwards)

initialize:
$$\lambda_c^N = rac{\partial g^N}{\partial \mathbf{c}^N}$$

iterate: DO n = N, 1, -1

$$\lambda_c^N = (\mathbf{F}_c^{n-1})^T \lambda_c^n + \frac{\partial g^{n-1}}{\partial \mathbf{c}^{n-1}}$$
END DO

result:
$$\lambda_c^0 = \nabla_{\mathbf{c}^0} J$$

 $\lambda_p = \nabla_{\mathbf{p}} J = \sum_{n=1}^N (\mathbf{F}_p^{n-1})^T \lambda_c^n$

AQ Attainment

GEOS-Chem vs IMPROVE

Aerosols and Radiative Forcing

IPCC 4, WGI, Ch 2, p180:

"It would be useful to identify the RF contribution attributable to different source categories (Section 2.9.3 investigates this).

However, few models have separated out the RF from specific emission source categories."

Forster et al., 2007: Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Aerosols and Radiative Forcing

<u>Sensitivities</u> from <u>every</u> sector and <u>every</u> region:

Calculated efficiently $(3 \times t_{fwd})$ with an adjoint model
GEOS-Chem direct RF

Implement radiative transfer, LIDORT, with derivative capabilities (Spurr, 2002).

Approximations made: Macro

- Clear sky
- Only direct effects
- Only SO₄-NO₃-NH₄-H₂O and BC aerosol

Micro

- Refractive index of SO_4 - NO_3 - NH_4 - H_2O is that of SO_4 .
- Assumed dry size
- External mixture

Timescale

- 1 week in July

Clear sky aerosol direct radiative forcing

Sensitivities with respect to different emissions sectors:

Clear sky aerosol direct radiative forcing

Consider transport sector SO_x

emissions

sensitivities

Location matters

Clear sky aerosol direct radiative forcing

Sensitivities with respect to different species & sectors: Shipping SO_x Transportation NO_x

Future work

Additional factors to consider

- Organic carbon
- Refractive index / mixing state
- Clouds
- Additional days / seasons
- Indirect effects
- Use GISS climatology, future emissions scenarios

Final comments on adjoint sensitivities

Disadvantages

sensitivities ≠ source attribution

Advantages

- Computational efficiency
- No perturbation to forward model
 - sensitivities around current model state
 - relevant for policy (+/- 10-30% Δ emission)
- Models can be first conditioned to observations using 4D-Var
- Estimates of emissions influence side-by-side with estimates influence of other parameters (ex: D_{dry})

Inverse Modeling Tests: Psuedo Observations

Inverse Modeling Tests: Psuedo Observations

Discrete Adjoint of Chemical Reaction Kinetics

Consider reaction rate equations:

$$\frac{dc}{dt} = f(c,t)$$

$$\frac{dc}{dt} = p_1 c_1 - p_2 c_2 c_3$$

Reaction rate parameters

Discrete Adjoint of Chemical Reaction Kinetics

Numerical model (Rosenbrock solver):

$$c^{n+1} = c^n + \sum_{i=1}^{s} m_i k_i, \quad \text{Err}^{n+1} = \sum_{i=1}^{s} e_i k_i$$
$$T_i = t^n + \alpha_i h, \quad C_i = c^n + \sum_{j=1}^{i-1} a_{ij} k_j$$
$$A = \left[\frac{1}{h\gamma} - \hat{J}^T(t^n, c^n)\right]$$
$$A \cdot k_i = f(T_i, C_i) + \sum_{j=1}^{i-1} \frac{b_{ij}}{h} k_j + h\gamma_i f_t(t^n, c^n)$$

Lots of numerical trick. for handling stiff ODEs

Discrete Adjoint of Chemical Reaction Kinetics

Adjoint of numerical model with respect to ...

... concentrations (Sandu et al., 2002):

$$\lambda_c^n = \lambda_c^{n+1} + \sum_{i=1}^s (H(t^n, c^n) \times k_i)^T \cdot u_i$$

$$+ \sum_{i=1}^s \hat{J}^T(T_i, C_i) \cdot u_i.$$

$$\hat{J} = f_c = \frac{\partial f}{\partial c}$$
 (Jacobian) $H = \frac{\partial^2 f}{\partial c_i \partial c_j}$ (Hessing the standard equation of the standard equatio

... reaction rate parameters (Henze et al., 2007):

$$\lambda_p^n = \lambda_p^{n+1} + \sum_{i=1}^s (\hat{J}_p(t^n, c^n) \times k_i)^T \cdot u_i$$
$$+ \sum_{i=1}^s f_p^T(T_i, C_i) \cdot u_i.$$

KPP automatically generates simulation and direct/adjoint sensitivity code for chemistry

Simulation code **Chemical mechanism** SUBROUTINE FunVar (V, F, RCT, DV) **#INCLUDE** atoms **INCLUDE** 'small.h' REAL*8 V(NVAR), F(NFIX) **#DEFVAR** REAL*8 RCT(NREACT), DV(NVAR) 0 = 0; 01D = 0;CA - rate for each equation 03 = 0 + 0 + 0;**REAL*8** A(NREACT) NO = N + O: C Computation of equation rates NO2 = N + O + O;A(1) = RCT(1)*F(2)A(2) = RCT(2)*V(2)*F(2)**#DEFFIX** A(3) = RCT(3)*V(3)O2 = O + O; M = ignore; A(4) = RCT(4)*V(2)*V(3)A(5) = RCT(5)*V(3)**#EQUATIONS** { Small Stratospheric } A(6) = RCT(6)*V(1)*F(1)O2 + hv = 2O : 2.6E-10*S: A(7) = RCT(7)*V(1)*V(3)O + O2 = O3 : 8.0E-17; A(8) = RCT(8)*V(3)*V(4)O3 + hv = O + O2 : 6.1E-04*S: A(9) = RCT(9)*V(2)*V(5)O + O3 = 2O2 : 1.5E-15; A(10) = RCT(10)*V(5)O3 + hv = O1D + O2 : 1.0E-03*S; C Aggregate function O1D + M = O + M : 7.1E-11; DV(1) = A(5)-A(6)-A(7)O1D + O3 = 2O2 : 1.2E-10; DV(2) = 2*A(1)-A(2)+A(3)-A(4)+A(6)-&A(9)+A(10)NO + O3 = NO2 + O2 : 6.0E-15: DV(3) = A(2)-A(3)-A(4)-A(5)-A(7)-A(8)NO2 + O = NO + O2 : 1.0E-11;DV(4) = -A(8)+A(9)+A(10)NO2 + hv = NO + O : 1.2E-02*S: DV(5) = A(8)-A(9)-A(10)

END

[Damian et.al., 1996; Sandu et.al., 2002]

April 11, 2007

KPP generated code is fast: compare to widely used GEAR solver

Box model test with KPP

87 species, 307 reactions: Note the sparse structure --> Fast!

Sensitivity of NO_x on rate constants in chemical mechanism

Sensitivity of NO_x on rate constants in chemical mechanism

GEOS-Chem vs Observations

Model description: Park et al., (2004)

GEOS-Chem vs Observations

Liao et al., (2007)

Nitrate dependence on NO_x

Nitrate dependence on NO_x

--- Target nitrate levels --- Initial, $\sigma_{ENO_x} = 1.00$ --- Adjusted