The role of chemistry in upper troposphere NO$_2$ under-predictions

Barron Henderson1,2, Robert Pinder2, Wendy Goliff3, William Stockwell4, Askar Fahr4, Golam Sarwar2, Bill Hutzell2, Rohit Mathur2, William Vizuete1, Ron Cohen5

1Dept. of Environmental Science and Engineering UNC Chapel Hill
2Atmospheric Modeling and Analysis Division, U.S. EPA
3Division of Atmospheric Sciences, Desert Research Institute
4Dept. of Chemistry, Howard University
5Depts. of Chemistry and Earth and Planetary Sciences, University of California Berkeley

October 21, 2009
CMAQ compared with SCIAMACHY: worst in rural areas.

Figure 1: NO$_2$ columns (10^{15} molec/cm2) from Napelenok ACP 2008

Figure 2: Vertical profiles of background and polluted conditions from Singh 2007.
Which model processes lead to under-prediction?

- Potential sources of error:
 - chemistry, photolysis, aerosols, advection, convection, diffusion, wet deposition, dry deposition, emissions, the stratosphere, the ocean, ...

- Modeled chemistry has been questioned (Olson 2006, Bertram 2007, Ren 2008)
 - typically: evaluate a model against a chamber study (i.e. a controlled timeseries of measurements)
 - problem: does anyone have a chamber at 236K and 0.298 atm?

- What to do?
 1. We need a timeseries of observations
 2. We need a timeseries of model results
Bertram results can derive air parcel ages

Deep convection sends a plug of surface air to upper troposphere
- wet scavenging removes HNO$_3$ and lightning adds NO$_x$
- Air parcels are mostly stable for up to 5 days
- Freshly convected: NO$_x$:HNO$_3$ $>>$ 1
- Aged air parcel: NO$_x$:HNO$_3$ $<<$ 1

Figure 3: Deep convection from Bertram et al. Science 2007
Figure 4: NO$_x$:HNO$_3$ is used to categorize days since convection. O$_3$ shows a monotonic increase with time. CO shows a monotonic decrease with time. NO$_2$ shows a gradual increase with time.
Observation timeseries: classified by “derived age”

Figure 4: NO_x:HNO_3 is used to categorize days since convection. O_3 shows a monotonic increase with time. CO shows a monotonic decrease with time. NO_2 shows a gradual increase with time.
Figure 4: NO$_x$:HNO$_3$ is used to categorize days since convection. O$_3$ shows a monotonic increase with time. CO shows a monotonic decrease with time. NO$_2$ shows a gradual increase with time.
Figure 4: NO$_x$:HNO$_3$ is used to categorize days since convection. O$_3$ shows a monotonic increase with time. CO shows a monotonic decrease with time. NO$_2$ shows a gradual increase with time.
Simulating aging of freshly convected air parcels

- Box modeling air parcels using LEEDS DSMACC box model
- Physical and initial conditions from “freshly convected” observations

Table 1: Overview of 7 chemical mechanisms in this study.

<table>
<thead>
<tr>
<th>Model (abbreviation)</th>
<th># Rxns</th>
<th># Spcs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Bond '05 (CB05)</td>
<td>176</td>
<td>62</td>
</tr>
<tr>
<td>State Air Pollution Research Center ‘99 (SAPRC99)</td>
<td>222</td>
<td>77</td>
</tr>
<tr>
<td>SAPRC ‘07 (SAPRC07)</td>
<td><700</td>
<td>153</td>
</tr>
<tr>
<td>Model for OZone And Related chemical Tracers “Standard” (MZ4)</td>
<td>290</td>
<td>88</td>
</tr>
<tr>
<td>GEOS-Chem “full” (GEOS)</td>
<td>290</td>
<td>88</td>
</tr>
<tr>
<td>Regional Atmospheric Chemistry Mech v.2 (RACM2)</td>
<td>341</td>
<td>117</td>
</tr>
<tr>
<td>Master Chemical Mechanism (MCM)</td>
<td>>4500</td>
<td>>1700</td>
</tr>
</tbody>
</table>

Barron Henderson, MS, ORISE Research Fellow
Upper troposphere NO₂ under-predictions 6/16
Figure 5: Model predictions compared to observations with the Mann-Whitney U test. Model medians are displayed circles that are filled when consistent with observations ($p < 0.0001$).
Figures

Figure 5

Model predictions compared to observations with the Mann-Whitney U test. Model medians are displayed circles that are filled when consistent with observations ($p < 0.0001$).
Figure 5: Model predictions compared to observations with the Mann-Whitney U test. Model medians are displayed circles that are filled when consistent with observations ($p < 0.0001$).
Figure 5: Model predictions compared to observations with the Mann-Whitney U test. Model medians are displayed circles that are filled when consistent with observations (p < 0.0001).
Models over-predict NO$_2$/NO$_x$, PAN, and HNO$_3$

Figure 6: Nitrogen species 24 hours since convection: observed (back) and modeled (front). Filled circles are consistent with observations (p < 0.0001).
Conclusions: Model performance

- Semi-explicit, regional, and global models all
 - under-predict NO_x:HNO$_3$
 - under-prediction NO_x
 - over-predict NO_x, esp. CH$_3$C(O)ONO$_2$ and HNO$_3$
 - over-prediction NO_2/NO$_x$

- All problems point to too many radical reactions
Figure 7: GEOS-Chem tested with old acetone quantum yield, with 2×CO, and with constrained acetaldehyde. Model medians are displayed circles that are filled when consistent with observations (p < 0.0001).
Figure 8: HOx by solar zenith angle 24 hours since convection: observed (back) and modeled (front). Filled circles are consistent with observations (p < 0.0001).
Potential issues

- Over-predicting radical source (i.e. photolysis)
- Over-predicting radical amplification
 - **CH₂O**
 - \(\text{OH} + \text{CH}_2\text{O} \rightarrow \text{CO} + \text{HO}_2 \)
 - \(\text{HO}_2 + \text{NO} \rightarrow \text{NO}_2 + \text{HO}^\cdot \)
 - **CH₃CHO**
 - \(\text{OH} + \text{CH}_3\text{CHO} \rightarrow \text{CH}_3\text{C(O)OO}^\cdot \)
 - \(\text{CH}_3\text{C(O)OO}^\cdot + \text{NO} \rightarrow \text{NO}_2 + \text{CH}_3\text{OO}^\cdot \)
 - \(\text{CH}_3\text{OO}^\cdot + \text{NO} \rightarrow \text{NO}_2 + \text{CH}_2\text{O} + \text{HO}_2 \)
 - \(\text{HO}_2 + \text{NO} \rightarrow \text{NO}_2 + \text{HO}^\cdot \)
- Over-predicting radical cycling efficiency
 - ratio of radical propagating to radical terminating reactions
 - propagation (i.e. \(\text{RO}_2 + \text{NO} \rightarrow \text{NO}_2 + \text{RO}^\cdot \))
 - termination (i.e. \(\text{OH} + \text{NO}_2 \rightarrow \text{HNO}_3 \))
Radicals sources in the first 4 hours

Table 2: Comparison of new radicals (ppt) by chemical mechanism.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>GEOS</th>
<th>CB05</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{CH}_2\text{O} \rightarrow \text{CO} + 2 \cdot \text{HO}^\cdot$</td>
<td>488</td>
<td>346</td>
</tr>
<tr>
<td>$\text{O}_3 \rightarrow \text{O}^1\text{D}; \text{O}^1\text{D} + \text{H}_2\text{O} \rightarrow 2 \cdot \text{HO}^\cdot$</td>
<td>215</td>
<td>246</td>
</tr>
<tr>
<td>$\text{HNO}_2 \rightarrow \text{NO} + \text{HO}^\cdot$</td>
<td>226</td>
<td>186</td>
</tr>
<tr>
<td>$\text{H}_2\text{O}_2 \rightarrow 2 \cdot \text{HO}^\cdot$</td>
<td>100</td>
<td>103</td>
</tr>
<tr>
<td>$\text{CH}_3\text{C(O)OOH} \rightarrow \text{CH}_3\text{OO}^\cdot + \text{HO}^\cdot$</td>
<td>38</td>
<td>59</td>
</tr>
<tr>
<td>$\text{CH}_3\text{CHO} \rightarrow \text{CO} + \text{HO}^\cdot_2 + \text{CH}_3\text{OO}^\cdot$</td>
<td>31</td>
<td>37</td>
</tr>
<tr>
<td>$\text{CH}_3\text{C(O)CH}_3 \rightarrow \text{CH}_3\text{C(O)OO}^\cdot + \text{CH}_3\text{OO}^\cdot$</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>$\text{HNO}_4 \rightarrow \text{HO}^\cdot_2 + \text{NO}_2$</td>
<td>23</td>
<td>13</td>
</tr>
<tr>
<td>$\text{CH}_3\text{OOH} \rightarrow \text{CH}_2\text{O} + \text{HO}^\cdot_2 + \text{HO}^\cdot$</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>Total new Radicals</td>
<td>1199</td>
<td>1035</td>
</tr>
<tr>
<td>$\text{CH}_3\text{OOH} + \text{HO}^\cdot \rightarrow \text{CH}_2\text{O} + \text{H}_2\text{O} + \text{HO}^\cdot$</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>$\text{CH}_3\text{OOH} + \text{HO}^\cdot \rightarrow \text{HO}_2 + \text{XO}_2 + \text{CH}_3\text{OO}^\cdot$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Radicals sinks in the first 4 hours

Table 3: Comparison of radical removals (ppt) by chemical mechanism.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>GEOS</th>
<th>CB05</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO$^\cdot$ + HO$^\cdot$ \rightarrow H$_2$O + O$_2$</td>
<td>363</td>
<td>266</td>
</tr>
<tr>
<td>HO$^\cdot$ + NO \rightarrow HNO$_2$</td>
<td>234</td>
<td>192</td>
</tr>
<tr>
<td>NO$_2$ + HO$^\cdot$ \rightarrow HNO$_4$</td>
<td>176</td>
<td>154</td>
</tr>
<tr>
<td>HO$^\cdot$ + NO$_2$ \rightarrow HNO$_3$</td>
<td>131</td>
<td>104</td>
</tr>
<tr>
<td>HO$^\cdot$ + HO$^\cdot$ \rightarrow H$_2$O$_2$</td>
<td>92</td>
<td>88</td>
</tr>
<tr>
<td>HO$^\cdot$ + HNO$_4$ \rightarrow H$_2$O + NO$_2$ + O$_2$</td>
<td>83</td>
<td>71</td>
</tr>
<tr>
<td>CH$_3$OO$^\cdot$ + HO$^\cdot$ \rightarrow CH$_3$OOH + O$_2$</td>
<td>43</td>
<td>29</td>
</tr>
<tr>
<td>HO$_2$ + CH$_3$C(O)OO$^\cdot$ \rightarrow CH$_3$C(O)OOH</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>Total Radical Sink</td>
<td>1219</td>
<td>1025</td>
</tr>
</tbody>
</table>
Conclusions

Model performance
- models under-predict NO\textsubscript{2} particularly after 1 day old
- over-predict rate of “aging” in the first 24 hours (improves subsequently)
- best O\textsubscript{3} came from worst HO\textsubscript{x}·
- HO\textsubscript{x}·
 - Like other studies HO\textsubscript{·model} = 2 \times HO\textsubscript{·obs}
 - Unlike other studies HO\textsubscript{2model} > HO\textsubscript{2obs}

Best practices
- check model photolysis for pressure/temperature sensitivity
- use detailed photolysis in the upper troposphere
- use Blitz et al. 2004 CH\textsubscript{3}C(O)CH\textsubscript{3} quantum yield

Next steps
- Investigate HO\textsubscript{2model} improvement compared to other studies
- Attribute radical production to initial species (not immediate precursor)
- Assess uncertainty in major radical source species
Acknowledgments

For all their support and help:
- Mat Evans, Ph.D., Univ. of LEEDS
- Jingqiu Mao, Ph.D., Harvard
- Ann Marie Carlton, Ph.D., US EPA
- Kinetic Pre-Processor (Damien et al. 2002)
- MAQLAB, UNC Chapel Hill

Special thanks for DC8 observational data to:
Melody Avery, Donald Blake, William Brune, Alan Fried, Brian Heikes, Greg Huey, Glen Sachse, Hanwant Singh, Paul Wennberg, and the INTEX team.

Support:
This research was supported in part by an appointment to the Research Participation Program at the National Exposure Research Laboratory, U.S. Environmental Protection Agency administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and EPA.