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1. INTRODUCTION 
 
Atmospheric aerosols significantly influence 

quality of life today and shape the evolution of 
Earth’s climate.  These solid or liquid particles 
suspended in the air alter the radiative heat 
balance of Earth directly by absorbing and 
scattering solar radiation and indirectly by 
enhancing cloud formation and reflectivity 
(Trenberth, et al., 2009).  Additionally, their 
interactions with light reduce visibility, a measure 
of air quality (Altshuller, et al., 1984).  
Furthermore, extensive epidemiological evidence 
suggests that particulate air pollution increases 
cardiovascular deaths as well as pulmonary 
problems (Dockery, 2001).  In an effort to 
understand mechanisms of climate change and to 
optimize methods of improving air quality, 
atmospheric models have been developed to 
elucidate the effects of natural and anthropogenic 
emissions of chemicals and particles into the 
atmosphere.  

Across this broad spectrum of climate and 
health effects, inquiries impossible to make via 
observation or experiment due to the relevant time 
scale or spatial range have become feasible with 
the application of chemical transport models 
(CTMs) as investigative tools.  New policies 
intended to improve air quality and reduce climate 
change have been implemented in large part 
because of the results of atmospheric modeling 
(Craig, et al., 2008).  Nevertheless, improvements 
are still needed in the applicability of regional air 
quality models and in the accuracy of global 
climate models, especially with regard to aerosols 
(Forster, et al., 2007). 

A promising means of refining atmospheric 
modeling is using the increasingly large sets of 
observational data from satellites, monitoring sites, 
and field campaigns.  Inverse modeling is one 
method of extracting meaningful and specific 
information out of vast and heterogeneous 

observational datasets.  In the last thirty years, 
measurements of atmospheric composition 
including aerosol abundance and type have 
become much more robust and dense due to 
increasing satellite technology and coverage (e.g., 
CALIPSO, MODIS) (Remer, et al., 2005, Vaughan, 
et al., 2004).  CTMs rely heavily upon input 
information such as initial or boundary conditions 
and emissions rates that are often uncertain and 
unreasonable to assess directly.  Therefore, 
application of inverse modeling of aerosols to vast 
and heterogeneous data gathered by satellites as 
well as field missions would assist in refining 
CTMs and increasing their predictive accuracy 
(Hartley and Prinn, 1993, Kurokawa, et al., 2009, 
Muller and Stavrakou, 2005).  An efficient method 
of inverse modeling with atmospheric aerosol 
observations is necessary for optimizing these 
parameters (Henze and Seinfeld, 2007).  Such 
tools can also be employed to calculate efficiently 
the extent to which various sources contribute to a 
given location’s atmospheric composition.  This 
type of information provides a means of answering 
a long-standing inquiry that has developed into the 
field of source apportionment with the most 
quantitative, physically-based methods available. 

 
2. METHODOLOGY 

 
2.1 Background 

 
CTMs solve the atmospheric diffusion 

equation (eq. 1) based on supplied boundary and 
initial conditions (Seinfeld and Pandis, 2006). 

 

   (1) 

 
The concentration of species i, Ci, at a given 

time, t, and location is determined by the 
advection of the species due to wind with speeds, 
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u, from a meteorological model; the diffusion 
through air given its density, ρ, and the diffusivity, 
K, of each species i; the consumption and 
production of species i through reactions, Ri; and 
the emissions, Ei, respectively.  Given this 
framework, a formulation appropriate for 
discussion of the inverse problem is , 
where observations of atmospheric 
concentrations, y, equal the sum of the operation 
of the CTM, F, on the vector, x, of model 
parameters influencing predicted concentrations 
and the observation and model error, ε.  

For developing an inverse model with 
atmospheric observations, considering a 
linearization of the model about a point x0 is 
convenient and satisfactory assuming that F(x) is 
linear within the bounds of the observation error, ε 
(eq. 2) (Rodgers, 2000) 

 

  (2) 

 
where is the kernel or tangent linear model 
of the function.  The aim, then, is to solve an 
inverse problem with noise, or error, associated 
with both the ambient observations and the model 
predictions.  Prior knowledge about the state of 
the atmosphere, x, and the degree of error, ε, can 
be expressed quantitatively with more or less 
uncertainty. Given this noisy inverse problem, 
Bayes’ theorem provides a formalism by which the 
model can be inverted to update the a priori state 
(i.e., estimated) of the atmosphere with 
information from the observation in order to 
establish the a posteriori estimate of the 
atmosphere if a probability distribution function is 
assumed for the model state vectors and the 
observation information.  The Gaussian 
distribution is suitable for describing the error 
associated with many processes and is amenable 
to algebraic manipulation; additionally, it retains 
the minimum amount of information a distribution 
function can given only mean and variance 
information (Rodgers, 2000).  Therefore, it is 
frequently applied in the inverse modeling of 
atmospheric chemistry (Hartley and Prinn, 1993, 
Kopacz, et al., 2009, Tarantola, 1987). 
Reducing the error-weighted mismatch between 
the a priori estimate of the state vector to the true 
state as well as the error-weighted mismatch 
between the observation and the model 
predictions requires minimizing the scalar-valued 
cost function, J(x) (eq. 3) (Rodgers, 2000). 

 

   (3) 

 
where xa and Sa denote the a priori values of the 
state vector and the model covariance matrix, 
respectively;  denotes the observational error 
covariance matrix; and γ denotes the 
regularization parameter that controls the extent to 
which the observations or a priori estimate 
constrains the solution (Kopacz, et al., 2009).  By 
minimizing the cost function with respect to the 
state vector (i.e., ), statistically optimal 
agreement between observations and predictions 
of the model as well as the revised a priori 
estimate of the state vector and the true state 
vector can be obtained (Kopacz, et al., 2009).  
Efficiently adjusting model parameters to achieve 
the minimization of the cost function (i.e., eq. 4) 
constitutes the solution of the inverse problem. 

 

   (4) 

 
In the last two decades, minimization of the 

cost function to determine better estimates of 
atmospheric composition has been pursued in at 
least two manners.  Analytical solutions to 

 have been extensively applied to 
reconcile emissions of trace gases with 
observations (Kaminski, et al., 1999b, Levelt, et 
al., 1998, Mendoza-Dominguez and Russell, 2001, 
Patra, et al., 2003); however, computational 
limitations on the number of parameters that can 
be optimized have driven the field beyond this 
method in an effort to better understand emissions 
that vary on smaller spatial and temporal scales.  
Adjoint operators can be applied to minimize the 
cost function without computational constraints on 
the number of parameters to be optimized 
(Cacuci, 1981, Marchuk, 1977, Tarantola, 1987).   

Variational data assimilation in the fields of 
meteorology and oceanography began employing 
adjoints two decades ago (Courtier and Talagrand, 
1987, Navon, 1998, Talagrand and Courtier, 
1987), and inverse modeling of atmospheric gases 
has since been accomplished through the 
application of adjoints (Elbern, et al., 2000, 
Hakami, et al., 2007, Hakami, et al., 2006, 
Kaminski, et al., 1999a, Kurokawa, et al., 2009, 
Martien and Harley, 2006, Muller and Stavrakou, 
2005, Zhang, et al., 2009, Zhang, et al., 2008). 
Most recently, adjoints have been a focus of 
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developments in the atmospheric modeling field 
with regard to aerosol emissions which have high 
spatial and temporal variability (Dubovik, et al., 
2008, Hakami, 2005, Henze, et al., 2007, 
Yumimoto, et al., 2008).  The primary motivation 
for development of an aerosol adjoint is that it can 
overcome the limitations of other approaches to 
minimizing the cost function. 

Recently, implementations of global adjoints of 
CTMs, including aerosol, have proved successful 
due to the capability of this method to optimize 
significantly more model parameters than the 
analytical method at computational times 
comparable to forward model executions (e.g., 
Dubovik, et al., 2008, Henze, et al., 2009).  
Optimization of the state vector occurs iteratively 
in a solution-seeking algorithm such as the 
steepest descent method wherein 

 
   (5) 

 
with a step size of δn is iterated until the change in 
the state vector is sufficiently small (Rodgers, 
2000).  To do so, the observations that have been 
translated into model observation space are fitted 
to the model prediction values in accordance with 
the cost function (eq. 3) in four dimensions across 
an interval of time, t = 0…T (Rodgers, 2000). 
Practically, the steps involved are execution of the 
forward model (i.e., a typical model run) in which 
values are saved at particular time points and 
subsequent integration of the adjoint model 
backwards in time.  The primary computational 
savings arise from the adjoint model operating on 
the forcing term (i.e., )) directly rather 
than a relying on a recalculation of the Jacobian at 
each time step. Due to this operation, only matrix 
by vector multiplications are required rather than 
vector by matrix multiplications.  These distinctions 
provide the necessary efficiency for optimizing 
such high-resolution model parameters as aerosol 
emissions and boundary conditions. 
 
2.2 ISORROPIA Adjoint 
 

Development of the adjoint of ISORROPIA 
(Nenes, et al., 1998, 1999) is carried out within the 
model framework of CMAQ-ADJ, the adjoint of the 
Community Multiscale Air Quality (CMAQ) model 
(Byun and Schere, 2006), an internationally 
employed regulatory model maintained by the 
EPA.  Hakami et al. developed the adjoint of the 
gas phase processes captured by the CMAQ 
model (2007), providing a framework within which 
an adjoint of aerosol properties would be of 

profound relevance.  The modular nature of the 
CMAQ forward model allows one to treat it as 
individual box models (Hakami, et al., 2007); in 
this sense, the box model for the thermodynamics, 
chemistry, and dynamics of aerosol species has 
not yet been treated in its adjoint. 

The key components of atmospheric aerosol 
are water, inorganic salts, crustal minerals, 
organics, and trace metals (Seinfeld and Pandis, 
2006).  Inorganic species constitute about 25 to 
50% of the dry mass of the particle depending on 
the air mass, wherein ammonium ( ), sodium 

( ), sulfate ( ), bisulfate ( ), nitrate 

( ), and chloride ( ) are the most abundant 
species (Heitzenberg, 1989).  In areas where dust 
contributes significantly to the aerosol loading, 
crustal species such as , , and  are 
also significant constituents, which can perturb 
equilibria of other species and are important for 
accurate modeling of aerosol composition and size 
distributions (Ansari and Pandis, 1999).  In the 
atmosphere and for small aerosol sizes, 
thermodynamics govern the partitioning of these 
species which can exist as gases, as solutes in 
the aerosol water, or as precipitated salts.  
Modeling the complex phase diagram that 
describes this behavior requires optimization of 
nonlinear (local) convex problem (Fountoukis and 
Nenes, 2007).  Of the models developed to 
describe these states of aerosol precursors and 
species, CMAQ primarily makes use of 
ISORROPIA’s description of the behavior of 
deliquesced aerosol; therefore, the adjoint of 
ISORROPIA has been developed for these 
aspects of the inorganic thermodynamic 
equilibrium model.   

 
3. PRELIMINARY RESULTS 

 
The adjoint of ISORROPIA consists of the 

original code supplemented with additional 
calculations to produce sensitivity values as well 
as transformations to allow these sensitivities to 
be traced through the code in reverse order.  Due 
to the complexity of such a task, the ISORROPIA 
code was manipulated for processing with the 
automatic differentiation tool TAPENADE (Hascoet 
and Pascual, 2004), which produced augmented 
code.  In cases where the derivative was not 
traceable through the original mathematical 
solution, alternate solution algorithms have been 
developed and verified against the original 
solutions.  Evaluation of the adjoint consists of 
comparing its sensitivities against finite difference 
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sensitivities for the range of atmospherically 
relevant concentrations and conditions.  The 
preliminary results in Figure 1 demonstrate the 

capability of this approach to treat the complex 
solution algorithm of the ISORROPIA models. 
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Figure 1.  Comparison of the sensitivity results from the brute force method (i.e., central finite difference) and the 
adjoint method.  The brute force results have been filtered to exclude non-physical sensitivities resulting from 
algorithmic shifts.  The results span the range of atmospherically relevant concentrations of total sulfate, nitrate, and 
ammonia present in an air mass in ratios such that the aerosol phase is sulfate rich and the range of relative 
humidities that are treated properly by ISORROPIA (i.e., 5% to 95%). 
 
4. CONCLUSIONS 

 
Development of the adjoint of ISORROPIA 

(Nenes, et al., 1998, 1999) required the 
implementation of the automatic differentiation 
tool, TAPENADE (Hascoet and Pascual, 2004), 
and manual manipulation of the code to make it 
suitable for processing.  The resulting adjoint code 
should be capable of producing sensitivities in 
agreement with central finite difference 
sensitivities for the range of concentrations except 
in cases in which the brute force method is 
incapable of capturing the physical behavior due 

to the structure of the algorithm.  The sensitivities 
calculated by the adjoint are that of the 
deliquesced species (i.e., output of the forward 
model) to the total concentrations of species 
present (i.e., the input to the forward model). 

Coupling the completed adjoint of ISORROPIA 
with CMAQ-ADJ will provide the adjoint of a 
regional chemical transport model including its 
treatment of inorganic aerosol species and their 
gaseous precursors.  This tool should prove useful 
for source apportionment as well as reconciliation 
of emissions inventories with observations of 
aerosol from satellites and field campaigns.  
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