
Presented at the 7th Annual CMAS Conference, Chapel Hill, NC, October 6-8, 2008

ANALYSIS OF CMAQ 4.6.1 PERFORMANCE AND EFFICIENCY

Jeffrey O. Young*
U.S. EPA, Office of Research and Development, National Exposure Research Laboratory, Atmospheric

Model Development Branch, Research Triangle Park, North Carolina 27711, USA

George Delic**
HiPERiSM Consulting, LLC, P.O. Box 569, Chapel Hill, NC 27514, USA

1. INTRODUCTION

CMAQ performance and workload throughput

have always been issues of concern for Air Quality
modelers. These concerns have only grown with
the migration to commodity processors in the past
decade because of compromises in architecture
design that have impaired performance and
workload throughput. With the new generation of
multi-core processors a decline in efficiency is to
be expected without some remedial action to
mollify the performance bottle-necks that CMAQ
encounters at runtime. The present study was
undertaken to identify where, and to what extent,
performance is inhibited. Since CMAQ is a data-
intensive application the search for memory path
"hot-spots" could be expected to provide clues
because of the expense of memory access on
commodity platforms. The following sections
present the details of this study which focused
only on CMAQ with the EBI chemistry solver.
Work is in progress on improving the Rosenbrock
and Gear solvers (Delic, 2008). The ultimate goal
of this work is to significantly reduce the wall-clock
time of large-scale CMAQ model simulations in
future releases.

2. CHOICE OF HARDWARE AND
OPERATING SYSTEM

The hardware systems chosen were

HiPERiSM Consulting, LLC’s 8 CPU SGI Altix®
with the Itanium2® (ia64) and Intel® Pentium 4
Xeon, 64EMT (x86_64) processors. Clock rate
and cache capacity differed with ia64 having
1.5GHz, and data cache sizes of 256KB (L2), 4MB
(L3), and x86_64 having 3.4GHz, and data cache
size 1MB (L2). CMAQ was executed in serial
mode on both platforms and with MPI mode on the
ia64 cluster. Both platforms used the SUSE 10
Linux release with proprietary modifications and

*Corresponding author: Jeffrey O. Young, U.S. EPA; e-
mail: Young.Jeffrey@epa.gov.
**Work performed under contract to ORD, U.S. EPA.

interfaces to the Performance Application
Programming Interface performance event library
(PAPI, 2005) to collect hardware performance
counter values as the code executes (Delic, 2003-
2006). Results for selected performance metrics
are presented to demonstrate how CMAQ code is
mapped to architectural resources by compilers.

Two compilers were used: Intel (ia64 and
x86_64 platforms) and Portland Group (x86_64
platform). In both cases high level (vector and
inter-procedural) optimizations were applied and
are designated by mnemonics ipo (Intel) or ipa
(Portland) for switch groups shown in Table 2.1.

Table 2.1. Compiler switches.

Platform Compiler
(version)

Switch
group

Switches

x86_64 Portland(1)
(7.0) ipa

-fastsse –Mscalarsse
-Mipa=fast -tp p7-64

x86_64 Intel(2)
(6.0) ipo

-tpp7 -xW -O3 -Ob2
-ipo

ia64 Intel(2)
(10.1) ipo

-O3 -Ob2 -ipo

1) Portland additional compiler switches include: -Mfixed –
Mextend –mcmodel=medium and link flag –
mcmodel=medium.

2) Intel additional compiler switches include: -fixed –
extend_source 132 –fno-alias and link flags –static
(without ipo), or –ipo –static (with ipo).

3. EPISODES STUDIED

The model episodes selected for this analysis

were for January 10 and August 14, 2006
(hereafter Winter and Summer, respectively). Both
used the CB05 mechanism with Chlorine
extensions and the Aero 4 version for PM
modeling. The EBI solver was used for the gas
chemistry. Both episodes were run for a full 24
hour scenario on a 279 X 240 Eastern US domain
at 12 Km grid spacing and 34 vertical layers. It
should be noted that these episodes required a
minimum memory capacity of 8GB and therefore
could only be executed on 64-bit operating
systems that are capable of addressing more than
2GB (this excluded 32-bit operating systems from
consideration).

1

mailto:Young.Jeffrey@epa.gov

Presented at the 7th Annual CMAS Conference, Chapel Hill, NC, October 6-8, 2008

4. RUNTIME PROFILE

Each 24-hour episode produced in excess of

22GB of output to disk. Typical wall-clock times
depended on the platform and compiler chosen.
They are in the range 32 to 48 hours for serial
execution and less for MPI enabled execution
(depending on the number of processes chosen).

The details of total runtime for the two
scenarios are shown in Table 4.1 for ia64 and
x86_64 platforms. The number in parentheses
represents the number of MPI processes for the
ia64 case and these results are also shown in Fig.
4.1. Note that the runtime of the Winter episode
takes 13% longer.

Table 4.1. Process time in seconds for the Intel
compiler with the ipo compiler switch group.

 Winter Summer
x86_64 ia64 x86_64 ia64
131,606 162,325(1) 116,999 143,578(1)

 90,068(2) 82,406(2)
 53,975(4) 46,100(4)
 28,162(8) 25,048(8)

Runtime (sec) for CMAQ 4.6.1 on the SGI
Altix

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

NP=1 NP=2 NP=4 NP=8

Number of MPI processes

Winter
Summer

Fig 4.1: Runtime in seconds for CMAQ 4.6.1 for the
Winter and Summer episodes with the Intel ipo compiler
switch group on the Itanium2 platform in serial and
parallel modes.

To determine where time is spent during
CMAQ runtime, profiles runs where conducted
with the two compilers using gprof (Intel) and
pgprof (Portland Group), respectively. In the case
of gprof, profiles were performed on both
platforms. Since the results were consistent
across platforms and compilers, typical results of
pgprof are shown here for the Summer episode.
Table 4.2 shows a (truncated) sort ranked on time
per procedure with a decaying dispersion from
10% to 2% of the total runtime. Only 24% of the
total runtime is spent in gas chemistry operations
(procedures with hr prefix).

Table 4.2. Profile sorted on time per procedure for
the 24 hour Summer episode on the Pentium 4
Xeon 64EMT with the Portland Group compiler
using the ipa compiler switch group.

Function seconds % Σ%
hrsolver 21,975 10 10
matrix 19,716 9 19
calcact 17,156 8 27
funcg5a 13,067 6 33
hppm 10,214 5 38
kmtab 9,060 4 42
hrcalcks 7,498 4 46
hrrates 7,301 3 49
hrprodloss 6,573 3 52
y_yamo 6,179 3 55
calcmr 5,929 3 58
cksummer 4,927 2 60
km298 4,881 2 62
hrg2 4,784 2 64
vdiff 4,466 2 66
isoinit3 4,367 2 68
ibacpos 4,173 2 70
hrg1 4,018 2 72
calcph 3,584 2 74

Table 4.3. Runtime profile sorted on number of
calls per procedure for the 24 hour Summer
episode on the Pentium 4 Xeon 64EMT with the
Portland compiler using the ipa compiler switch
group.

Function calls % Σ%
kmtab 19,614,348,165 4 4
Ibacpos 19,614,348,165 2 6
calcmr 16,000,736,938 3 9
calcph 14,547,357,820 2 11
km298 10,663,991,856 2 13
calcact 9,149,927,307 8 21
funcg5a 7,842,130,668 6 27
hrrates 6,882,708,845 3 30
hrprodloss 6,882,708,845 3 33
hrg2 6,882,708,845 2 35
hrg1 6,882,708,845 2 37
hrg4 6,882,708,845 1 38
hrg3 6,882,708,845 1 39
km273 4,330,128,825 1 40
km248 2,362,506,156 1 41

Table 4.3 shows the profile ranked by number
of procedure calls. While this display is also
truncated it does show that 41% of the total
runtime is spent in 15 procedures where the total
number of calls per procedure ranges from
2.4x103 to 19.6 x103 million calls. What is
important is that the top six and last two
procedures listed in Table 4.3 are from module
isocom.f and not the gas chemistry.

In the episodes considered here the top 7 to 9
routines account for half of the total execution
time.

2

Presented at the 7th Annual CMAS Conference, Chapel Hill, NC, October 6-8, 2008

5. HARWARE PERFORMANCE METRICS

5.1 Operations

In this section selected results of hardware

performance metrics are summarized for
execution of the serial version of CMAQ on the
ia64 platform with the Intel compiler. Some metrics
are rates (in million events per second) whereas
others are ratios of two events, and for details see
presentations by Delic (Delic 2003-2006, 2005,
2006). Table 5.1 shows the Mflops (FP_OPS_rate)
achieved for both episodes. Note the lower Mflops
rate for the Winter episode. Also shown is
FP_STAL_rate which is a measure of the number
of cycles per unit time that the floating point (FP)
units are stalled. The ratio FP_STAL_rate to the
TOT_CYC_rate shows that for some 20%-22% of
cycles the FP units are stalled (i.e. not performing
arithmetic work). The TOT_CYC_rate tracks the
clock speed of the two processors: 1.5.Mhz (ia64)
and 3.4Mhz (64EMT).

Table 5.1. Rate metrics for floating point units

Metric (million/sec) Summer Winter
FP_OPS_rate 597 507
FP_STAL_rate 292 315
TOT_CYC_rate 1415 1409

5.2 Memory access and TLB cache

Memory access is shown in Table 5.2 where

the total memory instruction rate (MEM_TOT_rate)
is large. However, this alone is not an indicator of
poor performance unless other issues coincide.
One such is the rate of TLB cache misses and
CMAQ shows an extraordinarily large number of
data TLB cache misses (instruction TLB cache
misses are negligible). This indicator suggests that
memory latency is expanded as the CPU waits for
a data address translation and fetch from higher
up the memory hierarchy. Note that for the Winter
episode the TLB data miss rate is significantly
higher even though the memory rate is lower.

Table 5.2. Operations for memory access

Metric (million/sec) Summer Winter
MEM_TOT_rate 495 417
TLB_DM_rate 12.7 13.7

5.3 L1 cache

The ia64 memory hierarchy includes L1, L2,

and L3 cache and Table 5.3 shows the total L1
cache access rates (L1_TCA_rate) and also the

total L1 cache miss rates which are seen to be
negligible even though the access rates are large.
Virtually all L1 cache accesses are reads
(L1_TCR_rate).

Table 5.3. Rate metrics for L1 cache access

Metric (million/sec) Summer Winter
L1_TCA_rate 673 565
L1_TCM_rate 11.5 13.6
L1_TCR_rate 673 565

Cache is divided into instruction and data

parts and Table 5.4 shows the ratio of instruction
access to data cache accesses (ICA/DCA). For L1
cache it is instruction cache access that
dominates. This is due to the high calling
overhead noted in Section 4: a control transfer
such as a procedure call will induce new
instruction fetches. An issue of concern is that
there is typically one L1 cache access per FP
operation. This value could be traced to a memory
bottle-neck or lack of vector code. Successful
vector code constructs tend to give fewer cache
accesses per flop because they enhance data
locality.

Table 5.4. Ratio metrics for L1 cache access

Metric (ratios) Summer Winter
ICA / DCA 14.7 10.6
TCA / FPOP 1.2 1.1

5.4 L2 cache
 As is seen in Table 5.5, L2 cache access rates
are also large, and are dominated by reads, with
negligible cache misses.

Table 5.5. Rate metrics for L2 cache access

Metric (million/sec) Summer Winter
L2_TCA_rate 648 484
L2_TCM_rate 9.3 13.4
L2_TCR_rate 532 370

Table 5.6 shows that, conversely to L1 cache,

here it is the data cache accesses that dominate
over instruction accesses by more than an order of
magnitude. This behavior could be traced to
memory references caused by use of numerous
scalar variables in several of the frequently called
procedures in CMAQ code. Again, as for L1
cache, there is one L2 cache access per FP
operation (flop), thereby enhancing sensitivity to
memory latency effects.

Table 5.6. Ratio metrics for L2 cache access

Metric (ratios) Summer Winter
DCA / ICA 63.4 39.5
TCA / FPOP 1.1 1.0

3

Presented at the 7th Annual CMAS Conference, Chapel Hill, NC, October 6-8, 2008

 5.5 Memory Bottlenecks and MPI
performance

This section extends the analysis to MPI

parallel execution on the ia64 platform. While it
may appear difficult to generalize, the above
analysis, when extended to the parallel CMAQ
execution case, suggests that memory bottlenecks
occur with increasing severity as the MPI parallel
process count increases. One example of this is a
measured increase from 1.1 to 1.7 in mean L1
cache reads per flop for both episodes. When this
behavior is correlated with the dominance of L1
instruction cache access rates, and that over 32%
to 56% (depending on the episode, or number of
MPI processes) of L2 instruction cache accesses
result in a miss, then there may be an apparent
explanation for where the memory bottle-neck
occurs in the hardware. It is important to note that
the memory access rates (particularly the mean
load rates) change little as the MPI parallel
process count increases whereas there is a
corresponding sharp decline (and large spread) in
the Mflop rate (for both episodes). As the MPI
parallel process count increases, the increase in
L1 cache reads per flop correlates with memory
loads remaining at a steady rate (with small
spread) while floating point rates decline. Fig. 5.1
show the correlation between Mflops and L1
cache reads per flop. There is an obvious steady
decline in the Mflop rate as the number of MPI
processes increases. A similar result holds for L1
cache reads per memory instruction. This
demonstrates that the load balance between
arithmetic and memory operations tilts sharply to
the latter as the number of MPI processes
increases.

6. EFFICIENCY

For MPI execution of both episodes Fig. 6.1
shows the parallel speedup observed and it is
notable that this diverges substantially from the
linear result. This trend may be traced to a
decrease in efficiency of CMAQ due to the
increasing effect of memory latency.

Results for two efficiency metrics are
presented in Table 6.1 and two conclusions are
that (a) parallel execution shows a 11% to 28%
decrease in efficiency relative to the serial
execution for flops per cycle, and (b) Parallel
execution shows a 17% to 19% decrease in
efficiency for flops per cycle as the number of MPI
processes increase from 2 to 8. This second
observation is one explanation for the scaling

result of Fig. 6.1. A second explanation is the
memory bottle-neck identified in Section 5.5. It is
interesting to observe that the Winter episode has
the lower efficiency values, and this accounts for
why it takes longer to complete a 24 hour
scenario.

Summer episode

360
380
400
420
440
460
480
500
520
540
560
580
600

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

L1 Total cache reads per flop

M
flo

p

Winter episode

360
380
400
420
440
460
480
500
520
540
560
580
600

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

L1 Total cache reads per flop

M
flo

p

Fig 5.1. Parallel results for CMAQ 4.6.1 for the Summer
(upper) and Winter (lower) episodes with the Intel ipo
compiler switch group on the Itanium2 platform. These
show the correlation of Mflops and L1 total cache reads
per flop as the number of MPI parallel processes
increments from 1, 2, 4 and 8 from left to right. The
serial result corresponds to the left most point in each
curve.

Speedup for CMAQ 4.6.1 on the SGI Altix

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Number of MPI processes

Linear
Winter
Summer

Fig 6.1. Parallel speedup for CMAQ 4.6.1 for the
Summer and Winter episodes with the Intel ipo compiler
switch group on the Itanium2 platform.

4

Presented at the 7th Annual CMAS Conference, Chapel Hill, NC, October 6-8, 2008

Table 6.1: Efficiency metrics for CMAQ 4.6.1 for
the Summer and Winter episodes with the ipo
compiler switch groups using the Intel compiler on
the x86_64 and Itanium2 platforms.

x86_64 ia64 Efficiency
metric
(episode)

Serial Serial MPI
parallel
N = 2
N = 4
N = 8

0.32
0.28

Flops per cycle
(Winter)

NA

0.360

0.26
0.29
0.28

Memory
instructions per
cycle
(Winter)

0.172

0.298

0.28
0.36
0.32

Flops per cycle
(Summer)

NA

0.422

0.30
0.34
0.33
0.32

Memory
instructions per
cycle
(Summer)

0.198

0.350

0.32

To compare efficiency of the two platforms
used here, Table 6.1 also shows results for
memory efficiency with the same compiler. The
Mflops were not measured for the x86_64
platform. Note the much higher memory efficiency
metric for the ia64 platform.

7. CMAQ CODE

7.1 Problem areas

The three fundamental problem areas are:
1. Insufficient use of vector instructions
2. Excessive control transfer instructions
3. Inefficient memory access

The workload spread over the top procedures

listed in Table 4.2 ranges from 3% to 10% of the
total runtime. Source code inspection of the most
frequently called procedures identified in Table 4.3
reveals that three have 15 lines (or less) of
executable code, and others are dominated by
scalar arithmetic and logical operations. Thus, not
surprisingly, these procedures invariably have
negligible vector loop structure and consist
predominantly of simple arithmetic statements and
conditional code blocks. Such circumstances can
be expected to lead to CPU pipeline stalls as
cache lines are flushed and new instructions are
fetched from memory. Also, the poor vector
structure in the CMAQ EBI solver code severely
limits the potential compiler optimization

opportunities on commodity architectures. Table
7.1 correlates the problem area noted above for
each procedure.

Table 7.1: Top procedures in CMAQ 4.6.1 that account
for 40% of the total runtime in Table 4.3. The “LOC”
column gives an estimate of the lines of code in each
procedure.

Problem area name
1 2 3

Estimated
LOC

(ibacpos) Y 6
(kmtab) Y 29
(calcmr) Y Y 150
(km273) Y Y 14
(calcph) Y 16
(km298) Y Y 14
(calcact) Y Y 127
(hrg3) Y Y 60
(hrg2) Y Y 319
(hrg4) Y Y 60
(hrrates) Y Y 224
(hrprodloss) Y Y 500
(hrg1) Y Y 314
(funcg5a) Y Y 50

7.2 Remedies

A detailed analysis of compiler optimization
abilities was undertaken and the result was that
both compilers gave only limited success in
optimizing the CMAQ code in the EBI solver
version. As a consequence the onus for improving
runtime performance falls on the code designers.
In this study no code intrusive optimizations were
attempted. However, the ability of compilers to
perform inlining procedures was investigated to
see the effects of reducing control transfer
instructions originating from calling overhead.
Automatic inline options did not inline the most
frequently called procedures identified in Tables
4.3 and 7.1. Nevertheless, both compilers used
here allow (in principle) the forced inlining of
named procedures. These features were explored
but failed to function entirely successfully.
However, the Portland Group compiler was able to
force the inlining of kmtab, ibacpos, and funcg5a,
and showed a noticeable reduction in runtime.
Obvious procedure groups that are targets for
optimizations through code transformations and
inline actions include call trees leading to:

 Subroutine hrsolver and procedures called
from there: hrdata, hrrates, hrprodloss,
hrg1, hrg2, hrg3, and hrg4.

 Subroutine calcact which is called from
numerous places in CMAQ

 Similarly for calcmr, calcph, kmtab,
ibacpos, etc.

5

Presented at the 7th Annual CMAS Conference, Chapel Hill, NC, October 6-8, 2008

The issue of adding vector code to the CMAQ
EBI solver will require major code restructuring. By
contrast the Rosenbrock and Gear solvers have
inherent vector structure and optimization
opportunities that are promising (Delic, 2008).

8. CONCLUSIONS FOR CMAQ

8.1 Serial execution

 Delivers more efficient performance when

compared to parallel mode
 Exhibits performance-inhibiting source

code constructs
 Does not match commodity hardware

effectively because of:
- Insufficient use of vector instructions
- Excessive control transfer instructions
- Inefficient memory access

8.2 Parallel execution

 With increasing number of parallel

processes:
- The load balance of memory to

floating point operations increases
- Parallel speedup increasingly departs

from linearity
- The average CPU idle time increases

for all CPU’s

8.3 Efficiency and architectures

For CMAQ, the ia64 (Itanium2) architecture is

more efficient than is the x86_64 (64EMT)
platform despite the difference in clock rate.

8.4 Next steps

Opportunities abound for significant

performance enhancement of CMAQ through
optimizations and code restructuring. Specifically,
next steps should:

 Inline the most frequently called
procedures that do little work

 Streamline the gas chemistry solver
group of procedures

 Seek opportunities higher up the call
tree for code restructuring to enhance
vector instructions and data locality

8.5 Can compilers help?

The compilers used here generate efficient

code for floating point and memory operations

whenever they find efficient vector code
constructs, but they do have very limited
procedure inlining optimization support.

8.6 Will future hardware help?

Future hardware offers more cores per CPU

socket, and unless data parallel structures are
uncovered by developers, CMAQ with the EBI
solver will deliver even lower efficiency than
reported here. The situation is aptly summarized:
“The road to high performance [will be] via multiple
processors per chip … this signals a historic
switch from relying solely on instruction level
parallelism (ILP) … to thread-level parallelism
(TLP) and data-level parallelism (DLP). Whereas
the compiler and hardware conspire to exploit ILP
implicitly without the programmer’s attention, TLP
and DLP are explicitly parallel, requiring the
programmer to write parallel code to gain
performance” (Hennessy, 2007)

REFERENCES

Delic, 2003-2006: see presentations at the Annual
CMAS meetings.

Delic, 2005: 6th International Conference on Linux
Clusters: The HPC Revolution 2005, Chapel Hill,
NC, April 26-28, 2005,

http://www.linuxclustersinstitute.org/Linux-
HPC-Revolution/Archive/2005techpapers.html.

Delic, 2006: 7th International Conference on Linux
Clusters: The HPC Revolution 2006, Norman, OK,
May 2-4,
2006.http://www.linuxclustersinstitute.org/Linux-
HPC-Revolution/Archive/2006techpapers.html,
and in Commodity Cluster Symposium, Baltimore,
MD, July 26-27,
http://www.arl.hpc.mil/events/Clusters2006

Delic, 2008: Parallel algorithms for CMAQ’s gas
chemistry solver procedures, (work in progress).

Hennessy, 2007, J.L. Hennessy and D.A.
Patterson, Computer Architecture, 4th Ed., 2007.

PAPI, 2005: Performance Application
Programming Interface, http://icl.cs.utk.edu/papi.
The use of PAPI requires a Linux kernel patch (as
described in the distribution). Note however, that
this patch has been included in the SGI Altix Suse
Linux kernel.

6

http://www.linuxclustersinstitute.org/Linux-HPC-Revolution/Archive/2005techpapers.html
http://www.linuxclustersinstitute.org/Linux-HPC-Revolution/Archive/2005techpapers.html
http://www.linuxclustersinstitute.org/Linux-HPC-Revolution/Archive/2005techpapers.html
http://www.linuxclustersinstitute.org/Linux-HPC-Revolution/Archive/2005techpapers.html
http://www.arl.hpc.mil/events/Clusters2006
http://icl.cs.utk.edu/papi

