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1. INTRODUCTION 

 
In recent years, the application of 

comprehensive grid-based one-atmosphere 
modeling systems has become an integral part of 
air quality forecasting for both federal and state 
agencies. For example, since 2005 the New York 
State Department of Environmental Conservation 
(NYSDEC) has been utilizing the Community 
Multiscale Air Quality (CMAQ) model (Byun and 
Schere, 2006) driven by operational National 
Center for Environmental Prediction (NCEP) 
weather forecasts to provide guidance to state air 
quality forecasters. In an attempt to better quantify 
uncertainties associated with these ozone and 
PM2.5 forecasts, NYSDEC in collaboration with the 
University at Albany and Stony Brook University 
(SUNY-SB) is currently embarking on a research 
project to apply multiple modeling systems for this 
task. The concept of ensemble forecasting, a 
technique that is widely used by the 
meteorological community to provide for a more 
robust and accurate weather forecast, is only 
beginning to be explored in air quality forecasting 
applications. Building upon various ongoing 
meteorological and air quality modeling efforts at 
federal, state, and academic institutions, this study 
is designed to implement this concept to New York 
State. As a first step towards this goal, daily air 
quality simulations for June 4 – August 31, 2008 
have been performed with CMAQ driven by four 
different meteorological forecasts obtained from 
NCEP and the Stony Brook University Short-
Range Ensemble Forecast (SREF) system. 
Additionally, retrospective simulations were 
performed in which CMAQ was driven by twelve 
archived members of the SUNY-SB SREF for 
June 4 – July 21, 2008. In this study, we present a 
comparison of the simulations from both the four 

and twelve member systems against 
measurements for O3 and PM2.5 over New York 
State to explore the potential benefits of utilizing a 
multi-model system to provide air quality forecast 
guidance. 

2. DATABASE AND METHODS OF 
ANALYSIS 

2.1 Model Setup and Observations 

In this study, we analyze CMAQ air quality 
forecasts for New York State for both a routine 
four member forecast system and an experimental 
retrospective twelve member forecast system. In 
all instances, New York State is covered by 
horizontal grids with a spacing of 12 km. The four 
member CMAQ system consists of two CMAQ 
simulations driven by the NCEP WRF-NMM 12:00 
UTC and 00:00 UTC weather forecasts, a third 
driven by a MM5 member and a fourth driven by a 
WRF-ARW member of the SUNY-SB 00:00 UTC 
SREF system (Jones et al., 2007; 
http://chaos.msrc.sunysb.edu/NEUS/ 
nwp_graphics.html).  The WRF-NMM/CMAQ 
simulations utilize the setup described by Otte et 
al. (2005), Kang et al. (2005), Yu et al. (2008) and 

                                                      Figure 1. Map showing the eight New York 
State air quality forecast regions and the 
locations of the ozone and continuous PM2.5 
monitors. 
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Hogrefe et al. (2007).  For the CMAQ simulations 
driven by the two selected SUNY-SB SREF MM5 
and WRF-ARW members, the meteorological 
fields were processed with the Meteorology-
Chemistry Interface Processor (MCIP) and 
emission inventories were processed with the 
Sparse Matrix Operator Kernel Emissions 
Modeling System (SMOKE). It should be noted 
that emission inputs, domain size, and vertical grid 
structures vary across the four members of this 
system. For the retrospective twelve member 
simulations, CMAQ forecasts were driven by 
seven daily MM5 and five daily WRF-ARW 
members from the 00:00 UTC SUNY-SB SREF 
system. Again, these meteorological fields were 
processed through MCIP and emissions were 
processed through SMOKE. For these 
simulations, horizontal grid structure and emission 
inputs are constant across all members. 

Observations of hourly ozone and total PM2.5 

concentrations for monitors in New York State 
were downloaded from the EPA AIRNOW system. 
Daily maximum 8-hr ozone concentrations and 24-
hr average PM2.5 concentrations were then 
determined from the hourly data and used in the 
subsequent analyses.  

2.2 Evaluation Metrics 

Routine human-based daily air quality 
forecasts in New York State are issued by the 
NYSDEC for the eight forecast regions shown in 
Figure 1. Consequently, the evaluation of the 
model-based forecasts follows the same approach 
in which the ozone or PM2.5 values for a given 
region and a given day are determined by taking 
the maximum observed and simulated values 
across all ozone or PM2.5 monitors located in that 
region.  This analysis only uses model predictions 
from grid cells containing the monitors shown in 

Figure 2a. Time series of observed and simulated daily maximum 8-hr ozone for June 4 – 
August 31, 2008 for forecast regions 1-4 (top) and regions 5 – 8 (bottom). Further details are 
provided in the text.  

Figure 2b. As Figure 2a but for daily average PM2.5
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Figure 1. These daily observation/model pairs are 
then used to compute discrete, categorical, and 
probabilistic model performance measures for 
each pollutant and region. The discrete forecast 
measures included in this analysis are the bias, 
root mean square error (RMSE), and correlation 
coefficient as defined by Willmott (1982) and the 
categorical metrics are the False Alarm Ratio 
(FAR), Probability of Detection (POD), and Critical 
Success Index (CSI) as described by Kang et al. 
(2005). For the categorical metrics, we selected a 
threshold that corresponds to the transition from 
the “moderate” to the “unhealthy for sensitivty 
groups” range of the Air Quality Index (AQI). For 
ozone, this threshold corresponds to 75 ppb (U.S. 
EPA, 1999 and 2008), while for PM2.5, it 
corresponds to 35.4 µg/m3 for forecasts issued in 
New York State (NYSDEC, 2007). The 
probabilistic evaluation approach is described in 
Section 3.2. 

 
3. RESULTS AND DISCUSSION 
 
3.1 Four Member Forecast System 

 
Time series of observed and predicted daily 

maximum 8-hr ozone and daily average PM2.5 
concentrations for June 4 – August 31, 2008 are 
shown in Figures 2a-b for the eight forecast 
regions in New York. The red lines represent 
observations, the blue lines represent the average 
over the four model predictions for each day, and 
the area shaded in gray represents the range 
between the minimum and maximum of the four 
predicted values for each day. While the 

concentrations in the time series are shown in ppb 
or µg/m3, the background in all panels is shaded to 
correspond to the ranges of the Air Quality Index 
(AQI). For ozone, the four-model average 
prediction tracks the observations well for all 
regions. In terms of regional differences, it can be 
seen that ozone exceeded a threshold of 75 ppb 
(AQI 100) on a number of days for regions 1 and 
2, i.e. Long Island and New York, while generally 
lower ozone concentrations with fewer or no 
exceedances were observed and simulated for the 
other regions. PM2.5 concentrations were generally 
also higher in region 1 and especially in region 2 
compared to other regions, but there were only 
very few observed or predicted exceedances of 
the AQI 100 threshold during this time period. For 
most regions, fluctuations of predicted PM2.5 
concentrations track well with observations but 
tend to be too low. Quantitative measures of 
model performance for ozone and PM2.5 for the 
four individual models as well as the four-model 
average are shown in Tables 1a-b for regions 1 
and 2. For ozone, both the discrete metrics (bias, 
root mean square error, and correlation 
coefficient) and categorical metrics for an ozone 
exceedance threshold of 75 ppb confirm that the 
modeling systems provided good ozone forecasts 
for these regions during the summer of 2008. The 
evaluation metrics for PM2.5 in Table 1b show that 
PM2.5 tends to be underestimated by all modeling 
systems in region 1 but overestimated by two of 
the four modeling systems and the average model 
forecast in region 2. Correlation coefficients for 
PM2.5 are lower than for ozone. No categorical 
metrics are shown for PM2.5 because only a few 

Table 1a. Discrete and categorical performance statistics for daily maximum 8-hr ozone. M1 denotes 
the 12:00 UTC NCEP WRF-NMM/CMAQ simulation, M2 the 00:00 UTC NCEP WRF-NMM/CMAQ 
simulation, M3 the 00:00 UTC SUNY-SB MM5/CMAQ simulation, M4 the 00:00 UTC SUNY-SB WRF-
ARW/CMAQ simulation, and Av the forecast calculated by averaging the forecasts from M1 – M4. 

Region 1 Region 2  
M1 M2 M3 M4 Av M1 M2 M3 M4 Av 

Bias (ppb) 5.4 7.3 3.2 4.1 4.1 1.7 2.5 1.5 3.1 1.6 
RMSE (ppb) 11.3 11.5 9.1 9.4 8.9 9.6 8.8 7.9 8.8 7.3 
Correlation 0.72 0.77 0.77 0.78 0.81 0.73 0.79 0.83 0.79 0.85 
POD (%) 62 77 69 62 46 55 82 55 55 64 
FAR (%) 47 44 31 43 40 40 36 33 25 30 
CSI (%) 40 48 53 42 35 40 56 43 46 50 

Table 1b. As in Table 1a but for daily average PM2.5 
Region1 Region2  
M1 M2 M3 M4 Av M1 M2 M3 M4 Av 

Bias (µg/m3) -4.9 -3.4 -0.3 -1.1 -2.4 -1.7 -0.3 4.6 3.1 1.3 
RMSE (µg/m3) 8.1 6.9 6.9 6.7 6.4 8.1 7.5 10.5 9.5 7.9 
Correlation 0.7 0.73 0.62 0.64 0.75 0.54 0.61 0.38 0.42 0.56 
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exceedances of the AQI 100 threshold were 
observed or simulated during this time period. The 
ozone performance metrics generally show equal 
or better model performance than the benchmark 
values reported by Kang et al. (2005) for a 25-day 
period during August 2002 and the PM2.5 metrics 
show similar values than those reported by Yu et 
al. (2008) for a forecasting study for July and 
August 2004. In addition, the forecasts generated 
by averaging the forecasts from the four individual 
modeling systems tends to perform better than the 
individual model forecasts, suggesting than a 
multi-model air quality forecasting approach may 
yield improved forecast guidance.  

 
3.2 Twelve Member Forecast System 

 
To further explore the potential benefits of 

utilizing an ensemble system to provide air quality 
forecast guidance, retrospective simulations were 
performed in which CMAQ was driven by twelve  
archived members of the SUNY-SB SREF system 
(Jones et al., 2007) for June 4 – July 21, 2008. To 
illustrate the variability in meteorological and air 
quality predictions introduced by using twelve 
different meteorological forecasts to CMAQ, 
Figure 3 illustrates spatial fields of the average 
coefficient of variation for daily maximum 
temperature, PBL height and 8-hr ozone and daily 
average wind speed and PM2.5. The coefficient of 
variation for each variable was calculated for each 
day at each grid cell by dividing the standard 
deviation of the twelve predicted values by the 
mean of the twelve predicted values.These daily 
maps of the coefficient of variation were then 

averaged over the June 4 – July 21 modeling time 
period.  These figures illustrate that the choice of 
meteorological ensemble members results in a 
typical variability of 5%, 15-20%, and 30-40% over 
land for daily maximum temperature, daily average 
wind speed, and daily maximum PBL height, 
respectively.   For ozone, the typical variability is 
on the order of 5-10%, while it is on the order of 
20%-25% for PM2.5. It is also interesting to note 
that the coefficient of variation for ozone shows 
local maxima in urban regions (e.g. New York City 
and Toronto), suggesting that different 
meteorological forecast fields lead to a wider 
divergence of ozone forecasts in areas of high 
emission densities.  

The discrete and categorical evaluation of the 
ozone and PM2.5 predictions for these 
retrospective twelve member simulations yielded 
similar results as those described in Section 3.1 
for the four member forecast system. In particular, 
the ozone and PM2.5 forecast generated by 
averaging the forecasts from the twelve individual 
modeling systems tends to perform better than 
individual model forecasts. In addition to 
measuring model performance by these discrete 
and categorical metrics, however, one can also 
evaluate the probabilistic aspects of the twelve 
member ensemble forecasts. As described in 
Talagrand et al. (1997), DellaMonache et al. 
(2006) and Jones et al. (2007), this can be 
accomplished by computing the Brier Skill Score 
and constructing Talagrand and reliability 
diagrams among other measures. For illustration, 
Figures 4a-b present Talagrand diagrams for daily 
maximum 8-hr ozone and daily average PM2.5 

Daily Maximum Temperature Daily Average Wind Daily Maximum PBL 

Daily Maximum 8-hr O3 Daily Average PM2.5

Figure 3. Time-averaged coefficient of variation across the twelve ensemble members for 
meteorological and air quality parameters as described in the text. 
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forecasts for three selected regions each. The first 
step in constructing these Talagrand diagrams is 
to rank-order the twelve forecasts for a given day. 
Next, depending on whether the observation for 
that day is lower than the lowest forecast, falls 
between the lowest and second-lowest forecast, 
…, or is higher than the highest forecast, that day 
is assigned to one of 13 bins. Last, the analysis is 
repeated for all days and a histogram is created 
based on the number of days assigned to each of 
the 13 bins. In an ideal ensemble forecast system, 
the observations are equally likely to lie between 
any two ordered adjacent forecast members, 
including the cases when the observations are 
outside the ensemble range on either side of the 
distribution. Therefore, the Talagrand diagram for 
an ideal ensemble system, i.e. a system that 
captures the true spread of the underlying 
observations, would show histogram bars of equal 
height. A U-shaped (inverted U-shaped) diagram 
indicates that the spread of the ensemble is too 
small (large) because the observed event too 
often falls outside (inside) the range of values 
sampled by the ensemble. Systematic over 
(under) prediction biases in the ensemble system 
lead to a L-shaped (inverted L-shaped) diagram.  

To illustrate such cases, Figures 4a-b present 
Talagrand diagrams for daily maximum 8-hr ozone 
and daily average PM2.5 forecasts for three 
selected regions each. Since 48 days and 12 
ensemble members (13 bins) were used, the 
expected number of days in each bin of an ideal 
Talagrand diagram would be between 3 and 4. 
The three panels in Figure 4a indicate that the 

ensemble system is close to capturing the true 
underlying spread of daily maximum 8-hr ozone 
for regions 1 and 2 and underestimates the spread 
for region 3. For PM2.5, the spread is 
underestimated for region1, the system is biased 
high for region 2, and biased low for region 7. 
Separate computation of reliability diagrams 
(Jones et al., 2007) for ozone forecasts for regions 
1 and 2 for a threshold of 75 ppb indicates good 
performance of the twelve member system with 
respect to predicting the probability of exceeding 
this threshold. In summary, these results show 
that an air quality ensemble forecast system 
driven by a meteorological ensemble forecast 
system could potentially be valuable in providing 
probabilistic ozone forecasts, especially for 
regions 1 and 2. However, the system tends to be 
underdispersed for ozone for other regions and for 
PM2.5 for all regions, indicating that uncertainties 
from other factors such as emissions or chemistry 
need to be included for a better treatment of 
variability. Furthermore, the ensemble simulations 
need to be carried out for longer time periods and 
other seasons than the 48 day summertime period 
described in this study to confirm these initial 
findings. 

4. SUMMARY 

Ozone and PM2.5 air quality forecasts for eight 
New York State forecast regions generated by 
multiple air quality forecast modeling systems 
were compared against observations for the 
summer of 2008. Discrete and categorical model 

Figure 4a. Talagrand diagrams for daily maximum 8-hr O3 predictions for forecast regions 1, 2, and 3.

Figure 4b. Talagrand diagrams for daily average PM2.5 predictions for forecast regions 1, 2, and 7.
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evaluation shows that the four model forecast 
system operated since June 4, 2008 provided 
good ozone forecast guidance, especially for Long 
Island and NYC metro area. On the other hand, 
forecasts for summertime PM2.5 are characterized 
by a negative bias for all areas except the NYC 
metro area. The four member mean forecasts 
often but not always exhibit better performance 
statistics than individual forecasts.  Employing 
weighting or bias correction approaches prior to 
averaging may further improve forecast 
performance. For a 48 day retrospective case 
study, CMAQ simulations were performed using 
twelve weather forecasts from the SUNY-SB 
SREF system. Variations in meteorology 
introduced by the twelve SREF members cause a 
typical daily maximum 8-hr ozone variability of 5 – 
10% (with higher values in urban areas) and a 
typical daily average PM2.5 variability of 20 – 25% 
over land areas. An evaluation of the probabilistic 
aspects of the ensemble forecast reveals that the  
twelve member system provides a realistic spread 
of ozone concentrations for regions 1 and 2 but 
tends to be underdispersed for other regions and 
for PM2.5, indicating that uncertainties from other 
factors such as emissions or chemistry need to be 
included for a better treatment of variability. 
Overall, these results suggest that pursuing an 
ensemble air quality forecasting approach may 
yield improved forecast guidance as measured by 
discrete, categorical, and probabilistic metrics. 
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