Aerosol modeling at regional and continental scales CEREA - Joint Research Laboratory ENPC/EdF R & D http://cerea.enpc.fr

> Karine Sartelet, Edouard Debry, Marilyne Tombette, Yelva Roustan, Bruno Sportisse

> > 3 October 2007

3 October 2007 1 / 16

Aerosol modeling in Polyphemus Description of the models Aerosol processes

2 Validation and sensitivity studies

Overview over Greater Paris over Greater Tokyo Over East Asia Over Europe

Description of the models

The air quality modeling platform Polyphemus

- http://cerea.enpc.fr/polyphemus/
- Chemistry transport Model Polair3D

Two aerosol models

- SIze REsolved Aerosol Model (SIREAM)*
- Modal Aerosol Model (MAM)**

Aerosol composition

• inert: MD, BC; inorganic: Na, SO₄, NH₄, NO₃, Cl; organic

(*)E. Debry, K. Fahey, K. Sartelet, B. Sportisse, and M. Tombette. Technical note: A new SIze REsolved Aerosol Model: SIREAM. *Atmos. Chem. Phys.*, 7:1537–1547, 2007

(**)K.N. Sartelet, H. Hayami, B. Albriet, and B. Sportisse. Development and preliminary validation

of a modal aerosol model for tropospheric chemistry: Mam. Aer. Sci. Tech., 40(2):118-127, 2006

Aerosol processes

Overview

Validation

Measured and simulated mean, correlation

$$NME = \frac{\sum_{k=1}^{N} |C_k - O_k|}{\sum_{k=1}^{N} O_k}, \ NMB = \frac{\sum_{k=1}^{N} (C_k - O_k)}{\sum_{k=1}^{N} O_k}$$

Sensitivity studies

- Impact of aerosol processes and parameterizations
- "Brute Force" method: reference simulation (used to compute scores) compared to simulations where only one process differs from the reference simulation

Over Greater Paris

Validation (May to September 2001)

• 10 sections ([0.01-10µm]) • PI

PM₁₀ averaged over 8 stations

Meas. mean	Sim. mean	Corr	NMB	NME
23.0	23.9	59.5	4.0	32.4

Sensitivity study (1 to 15 July 2001)

- Heterogeneous reactions, hybrid: bulk equilibrium for 7 sections (< 1.25µm).
- 1: without heterogeneous reactions
- 2: bulk equilibrium
- 3: dynamic mass transfer

M. Tombette and B. Sportisse. Aerosol modeling at regional scale: Model-to-data comparison and sensitivity analysis over Greater Paris. *Atmos. Env.*, 2007. in press

K. Sartelet

Over Greater Tokyo

High pollution episodes (9-10 Dec. 1999, 31 July-1 Aug. 2001)

	Meas.	Sim.	NMB	NME
sulfate (winter)	2.6	3.3	-26	41
nitrate (winter)	4.5	4.1	8	111
sulfate (summer)	13.3	14.1	-7	34
nitrate (summer)	5.7	2.1	62	67

Reference simulation

- With dry deposition, nucleation and coagulation
- Condensation/evaporation: bulk equilibrium
- No Heterogeneous reactions
 4 modes [0.001-10μm]

K. Sartelet, H. Hayami, and B. Sportisse. Dominant aerosol processes during high-pollution episodes over Greater Tokyo. *J. of Geophys. Res.*, 112(D14214), 2007

K. Sartelet

Aerosol modeling at regional and continental scales

Over Greater Tokyo: sulfate

without condensation (1), using the hybrid scheme (2), with heterogeneous reaction (3), without dry deposition (4), without nucleation (5), without coagulation (6), SIREAM (7), CMAQ (8)

- Winter: Sensitivity to condensation, CMAQ, coagulation
- Summer: high sensitivity to CMAQ
- Impact of dry deposition is limited
- Impact of nucleation and coagulation higher in winter

Over Greater Tokyo: nitrate

without condensation (1), using the hybrid scheme (2), with heterogeneous reaction (3), without dry deposition (4), without nucleation (5), without coagulation (6), SIREAM (7), CMAQ (8)

- Impacts of condensation, heterogeneous reactions and CMAQ dominate
- Impact of thermodynamic equilibrium assumption is limited

Over East Asia

Framework

 Model Inter-Comparison Study –Asia Phase II (MICS 2): 8 models are compared over 4 months in 2001 and 2002

Sensitivity study: March 2001

- Condensation/evaporation: bulk equilibrium
- Heterogeneous reactions and cloud chemistry are ignored
- 10 sections [0.01-10μm]
 24 stations

	Meas.	Sim.	NMB	NME
sulfate	4.9	5.2	13	13
nitrate	0.9	1.8	24	27

K. Sartelet, H. Hayami, and B. Sportisse. MICS-Asia Phase II: sensitivity to the aerosol module.

Atmos. Env., 2007. doi:10.1016/j.atmosenv.2007.03.005, In press

K. Sartelet

Aerosol modeling at regional and continental scales

Over East Asia (2)

(3), with heterogeneous reaction (4), with cloud chemistry (5), CMAQ (6)

- Sulfate: CMAQ, cloud chemistry, heterogeneous reaction, coagulation
- Nitrate: heterogeneous reaction, CMAQ

Over Europe

Validation: 1 year (2001)

	Meas.	Sim.	Corr	NMB	NME
PM ₁₀ (EMEP)	16.9	15.6	55	-1	51
PM ₁₀ (Airbase)	24.9	15.4	44	-33	49
sulfate (EMEP)	2.5	2.1	56	-5	51
sulfate (Airbase)	1.9	2.4	51	73	105
nitrate (EMEP)	2.6	4.1	41	91	122
nitrate (Airbase)	3.5	4.4	72	27	56

Sensitivity study

- 7 July 8 Aug. and 15 Nov.- 14 Dec.
- Cond/evap: bulk equilibrium

- No nucleation
- 5 sections [0.01-10μm]

K. Sartelet et al. Simulation of aerosols and gas-phase species over Europe with the

POLYPHEMUS system. part I: model-to-data comparison for 2001. Atmos. Env., 2007.

K. Sartelet

Aerosol modeling at regional and continental scales

3 October 2007 12 / 16

Over Europe: sulfate

10 sections (1), dynamic mass transfer (2), without the het. react. N₂O₅ (3), varying reaction probability for the het. react. N₂O₅ (4), with nucleation (5), criterion LWC < 0.07g m⁻³ to call VSRM (6), cloud fraction to diagnose when to call VSRM (7), parameterization for scavenging (8), boundary conditions (9), parameterization for vertical diffusion (10)

Over Europe: nitrate

10 sections (1), dynamic mass transfer (2), without the het. react. N_2O_5 (3), varying reaction probability for the het. react. N_2O_5 (4), with nucleation (5), criterion LWC < 0.07g m⁻³ to call VSRM (6), cloud fraction to diagnose when to call VSRM (7), parameterization for scavenging (8), boundary conditions (9), parameterization for vertical diffusion (10)

Over Europe: PM₁₀

10 sections (1), dynamic mass transfer (2), without the het. react. N₂O₅ (3), varying reaction probability for the het. react. N₂O₅ (4), with nucleation (5), criterion LWC < 0.07g m⁻³ to call VSRM (6), cloud fraction to diagnose when to call VSRM (7), parameterization for scavenging (8), boundary conditions (9), parameterization for vertical diffusion (10)

Conclusion

- Aerosols are sensitive to configuration choices outside the aerosol module: e.g. vertical diffusion and boundary conditions
- and inside the aerosol module: heterogeneous reaction, cloud chemistry and scavenging
- Size distribution, coagulation and nucleation have lower sensitivities
- The sensitivity to dynamic mass transfer vary depending on conditions
- Low sensitivity to variation of the reaction probability of the het. react. N_2O_5 with temperature, RH and aerosol composition (Evans and Jacob, 2005; Riemer et al., 2003)
- This presentation focused on sulfate, nitrate and PM₁₀ integrated over several days/months. Conclusion would be different if focus on small particles, number distribution...