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Motivations

Limitations of Deterministic Approches
• High uncertainties: input data, parameterizations, numerical

resolution, even bugs and user mistakes
• State dimension, 106–107, versus number of observations, 102

• (Over)tuning ?
• A single forecast, even the best one, is uncertain

Ensemble Approaches to Overtake Uncertainties
• Several models bring more information
• From all-in-one models to a platform of model configurations

I Fragmented model: Alternative physical formulations
Alternative numerical schemes
Alternative input data

I A model configuration may be viewed as a new model



Building a Multimodel Ensemble

Tool: the Air Quality Modeling System Polyphemus
• Ancient Greek: “multiple speeches”
• See the poster (design and contents of Polyphemus)

Mallet, Quélo, Sportisse, Ahmed de Biasi, Debry, Korsakissok, Wu, Roustan, Sartelet, Tombette and Foudhil,
Technical Note: The air quality modeling system Polyphemus, ACPD, 2007

Ensemble Capabilities

• Used in current work
I Alternative physical parameterizations
I Several input data sources
I Numerical modules

• Not used for the moment
I Two “base” Eulerian chemistry-transport models
I Model coupling (plume-in-grid, nesting)
I Data assimilation algorithms (OI, Kalman filters, 4D-Var)



Building a Multimodel Ensemble (cont.)
# Parameterization Reference Alternative(s)

Physical parameterizations
1. Chemistry RACM RADM 2
2. Vertical diffusion Troen & Mahrt Louis
3. Louis in stable conditions
4. Deposition velocities Zhang Wesely
5. Surface flux Heat flux Momentum flux
6. Cloud attenuation RADM method Esquif
7. Critical relative humidity Depends on σ Two layers

Input data
8. Emissions vertical distribution All in the first cell All in the two first cells
9. Land use coverage (dep.) USGS GLCF
10. Land use coverage (bio.) USGS GLCF
11. Exponent p in Troen & Mahrt 2 3
12. Photolysis rates JPROC Depends on zenith angle

Numerical issues
13. Time Step 600 s 100 s
14. 1800 s
15. Splitting method First order Strang splitting
16. Horizontal resolution 0.5◦ 0.1◦
17. 1.0◦
18. Vertical resolution 5 layers 9 layers
19. First layer height 50 m 40 m



Ensemble Simulations Bring Useful Information

Study

• Ozone simulations at European scale during 4 months
• Resolution of 0.5◦, 5 layers up to 3000 m
• ECMWF meteorological fields
• 48 members in the ensemble
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Best Model and Ensemble Mean Are Limited
Model Combination and Advanced Methods Are Desirable

Notations
Output of model m at time t and position x : Mm,t ,x

Linear combination: Et ,x =
∑

m αm,tMm,t ,x Observation: Ot ,x

Best Model: the Reference to Improve
• EBt ,x = Mbm,t ,x where m̂ minimizes RMSE(Mm, O)

• RMSE(EB, O) = 22.4 µg m−3

Ensemble Mean: the Most Simple Combination
• EMt ,x = Mm,t ,x

m

• RMSE(EM, O) = 23.9 µg m−3

Conclusion: “assimilation” of observations is needed



Combining Models
Least-Squares Methods or “Superensembles” (Krishnamurti et al., 2000)

Potential: A Posteriori Coefficients

• ELSt ,x =
∑

m αm,tMm,t ,x where
∀t α·,t = argmin

∑
x (Ot ,x −

∑
m αm,tMm,t ,x)2

• RMSE(ELS, O) = 12.0 µg m−3 (best model: 22.4 µg m−3)
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Combining Models
Least-Squares Methods or “Superensembles” (Krishnamurti et al., 2000)

Smoothing Weights Time Evolution and Forecasting

• ELS30
t ,x =

∑
m α30

m,tMm,t ,x where

∀t α30
·,t = argmin

∑
t−30≤T<t ,x

(
OT ,x −

∑
m αm,T Mm,T ,x

)2

• RMSE(ELS30, O) = 20.2 µg m−3 (againt 22.4 µg m−3)
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Machine Learning Algorithms
Joint Work with Gilles Stoltz (CNRS; ENS Paris)

Example: Exponentiated Gradient (Kivinen and Warmuth, 1997)

• Combination EGt ,x =
∑

m αm,tMm,t ,x

• Loss function: L(EGt ,·, Ot ,·) =
∑

x (EGt ,x −Ot ,x)2

• Weights update:

∀m αm,t+1 = exp
(
−η

∂L(EGt ,·, Ot ,·)

∂αm,t

)
× normalization

• Choice: learning rate η

• Bound on the regret
|
∑

t L(EGt ,·, Ot ,·)−minα
∑

t L(
∑

m αmMm,t ,·, Ot ,·)| ≤
γNstation

√
Nstep ln Nmodel

• RMSE(EG
(
η = 10−5), O

)
= 21.6 µg m−3



Hybrid Methods
Joint Work with Gilles Stoltz (CNRS; ENS Paris)

Hybrid Method

• Purpose: join performances of ELS30 and theoretical bounds from
learning algorithms

• Strategy: include ELS30 (and possibly other combinations) in the
ensemble, and apply learning (meta-)algorithm

Example

• Ensemble: 48 models plus ELS30, ELS20 and ELS10

• Learning algorithm: extended exponential gradient, with η = 10−5

• Successful result: 19.9 µg m−3



Conclusions

• Ensemble forecast relying on Polyphemus design
I Technical Note: The air quality modeling system Polyphemus, Mallet,

Quélo, Sportisse, Ahmed de Biasi, Debry, Korsakissok, Wu, Roustan,
Sartelet, Tombette and Foudhil, ACPD, 2007

• Detailed uncertainty analysis (not shown here)
I Uncertainty in a chemistry-transport model due to physical

parameterizations and numerical approximations: An ensemble approach
applied to ozone modeling, Mallet & Sportisse, JGR, 2006

• Model sequential aggregation to improve forecasts
I Ensemble-based air quality forecasts: a multimodel approach applied to

ozone, Mallet & Sportisse, JGR, 2006
I Ozone ensemble forecast with machine learning algorithms, Mallet &

Stoltz, in preparation
• Toward operational use

I 43 models ran every day with Prév’air data, for 4 months in 2006 –
but without aggregation
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