Forecasting Ozone at European Scale with Ensembles

Vivien Mallet¹ and Bruno Sportisse²

¹INRIA ²ENPC

CMAS 2007, 1-3 October 2007

Research carried out in the INRIA-ENPC joint project-team CLIME

and in the ENPC-EDF R&D joint laboratory CEREA

Motivations

Limitations of Deterministic Approches

- High uncertainties: input data, parameterizations, numerical resolution, even bugs and user mistakes
- State dimension, 10⁶-10⁷, versus number of observations, 10²
- (Over)tuning ?
- A single forecast, even the best one, is uncertain

Ensemble Approaches to Overtake Uncertainties

- Several models bring more information
- From all-in-one models to a platform of model configurations
 - Fragmented model: Alternative physical formulations Alternative numerical schemes Alternative input data
 - A model configuration may be viewed as a new model

Building a Multimodel Ensemble

Tool: the Air Quality Modeling System Polyphemus

- Ancient Greek: "multiple speeches"
- See the poster (design and contents of Polyphemus)

Mallet, Quélo, Sportisse, Ahmed de Biasi, Debry, Korsakissok, Wu, Roustan, Sartelet, Tombette and Foudhil, Technical Note: The air quality modeling system Polyphemus, ACPD, 2007

Ensemble Capabilities

- Used in current work
 - Alternative physical parameterizations
 - Several input data sources
 - Numerical modules
- Not used for the moment
 - Two "base" Eulerian chemistry-transport models
 - Model coupling (plume-in-grid, nesting)
 - Data assimilation algorithms (OI, Kalman filters, 4D-Var)

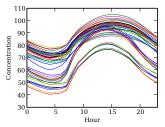
Building a Multimodel Ensemble (cont.)

			•
#	Parameterization	Reference	Alternative(s)
Physical parameterizations			
1. 2.	Chemistry Vertical diffusion	RACM Troen & Mahrt	RADM 2 Louis Louis in stable conditions
2. 3. 4. 5. 6. 7.	Deposition velocities Surface flux Cloud attenuation Critical relative humidity	Zhang Heat flux RADM method Depends on σ	Wesely Momentum flux Esquif Two layers
8. 9. 10. 11. 12.	Emissions vertical distribution Land use coverage (dep.) Land use coverage (bio.) Exponent ρ in Troen & Mahrt Photolysis rates	Input data All in the first cell USGS USGS 2 JPROC	All in the two first cells GLCF GLCF 3 Depends on zenith angle
Numerical issues			
13. 14.	Time Step	600 s	100 s 1800 s
15. 16. 17.	Splitting method Horizontal resolution	First order 0.5°	Strang splitting 0.1° 1.0°
	Vertical resolution First layer height	5 layers 50 m	9 layers 40 m

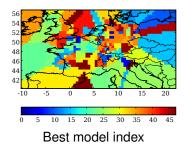
Ensemble Simulations Bring Useful Information

Study

- Ozone simulations at European scale during 4 months
- Resolution of 0.5°, 5 layers up to 3000 m
- ECMWF meteorological fields
- 48 members in the ensemble



Ozone daily profiles from 48 members



RINRIA

Best Model and Ensemble Mean Are Limited

Model Combination and Advanced Methods Are Desirable

Notations

Output of model *m* at time *t* and position *x*: $M_{m,t,x}$ Linear combination: $E_{t,x} = \sum_{m} \alpha_{m,t} M_{m,t,x}$ Observation: $O_{t,x}$

Best Model: the Reference to Improve

- $EB_{t,x} = M_{\widehat{m},t,x}$ where \widehat{m} minimizes $RMSE(M_m, O)$
- RMSE(*EB*, *O*) = 22.4 μ g m⁻³

Ensemble Mean: the Most Simple Combination

- $EM_{t,x} = \overline{M_{m,t,x}}^m$
- RMSE(*EM*, *O*) = 23.9 μ g m⁻³

Conclusion: "assimilation" of observations is needed

Least-Squares Methods or "Superensembles" (Krishnamurti et al., 2000)

Potential: A Posteriori Coefficients

•
$$ELS_{t,x} = \sum_{m} \alpha_{m,t} M_{m,t,x}$$
 where
 $\forall t \quad \alpha_{\cdot,t} = \operatorname{argmin} \sum_{x} (O_{t,x} - \sum_{m} \alpha_{m,t} M_{m,t,x})^2$

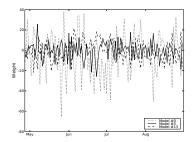
- RMSE(ELS, O) = 12.0 $\mu g\,m^{-3}$ (best model: 22.4 $\mu g\,m^{-3})$

Least-Squares Methods or "Superensembles" (Krishnamurti et al., 2000)

Potential: A Posteriori Coefficients

•
$$ELS_{t,x} = \sum_{m} \alpha_{m,t} M_{m,t,x}$$
 where
 $\forall t \quad \alpha_{\cdot,t} = \operatorname{argmin} \sum_{x} (O_{t,x} - \sum_{m} \alpha_{m,t} M_{m,t,x})^2$

- RMSE($\textit{ELS},\textit{O}) = 12.0~\mu g\,m^{-3}$ (best model: 22.4 $\mu g\,m^{-3})$



Time evolution of optimal weights (*ELS*)

Least-Squares Methods or "Superensembles" (Krishnamurti et al., 2000)

Smoothing Weights Time Evolution and Forecasting

•
$$ELS_{t,x}^{30} = \sum_{m} \alpha_{m,t}^{30} M_{m,t,x}$$
 where
 $\forall t \quad \alpha_{\cdot,t}^{30} = \operatorname{argmin} \sum_{t-30 \le T < t,x} (O_{T,x} - \sum_{m} \alpha_{m,T} M_{m,T,x})^2$

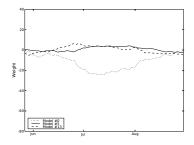
• RMSE(*ELS*³⁰, *O*) = 20.2 μ g m⁻³ (againt 22.4 μ g m⁻³)

Least-Squares Methods or "Superensembles" (Krishnamurti et al., 2000)

Smoothing Weights Time Evolution and Forecasting

•
$$ELS_{t,x}^{30} = \sum_{m} \alpha_{m,t}^{30} M_{m,t,x}$$
 where
 $\forall t \quad \alpha_{\cdot,t}^{30} = \operatorname{argmin} \sum_{t-30 \le T < t,x} (O_{T,x} - \sum_{m} \alpha_{m,T} M_{m,T,x})^2$

• RMSE($ELS^{30}, \textit{O}) = 20.2 \ \mu g \ m^{-3}$ (againt 22.4 $\mu g \ m^{-3})$



Time Evolution of Forecast Weights (*ELS*³⁰)

Machine Learning Algorithms

Joint Work with Gilles Stoltz (CNRS; ENS Paris)

Example: Exponentiated Gradient (Kivinen and Warmuth, 1997)

- Combination $EG_{t,x} = \sum_{m} \alpha_{m,t} M_{m,t,x}$
- Loss function: $L(EG_{t,\cdot}, O_{t,\cdot}) = \sum_{x} (EG_{t,x} O_{t,x})^2$
- Weights update:

$$\forall m \quad \alpha_{m,t+1} = \exp\left(-\eta \frac{\partial L(EG_{t,\cdot}, O_{t,\cdot})}{\partial \alpha_{m,t}}\right) \times \text{normalization}$$

- Choice: learning rate η
- Bound on the regret $|\sum_{t} L(EG_{t,\cdot}, O_{t,\cdot}) - \min_{\alpha} \sum_{t} L(\sum_{m} \alpha_{m} M_{m,t,\cdot}, O_{t,\cdot})| \le \gamma N_{\text{station}} \sqrt{N_{\text{step}} \ln N_{\text{model}}}$
- RMSE($EG(\eta = 10^{-5}), O$) = 21.6 µg m⁻³

Hybrid Methods

Joint Work with Gilles Stoltz (CNRS; ENS Paris)

Hybrid Method

- Purpose: join performances of *ELS*³⁰ and theoretical bounds from learning algorithms
- Strategy: include *ELS*³⁰ (and possibly other combinations) in the ensemble, and apply learning (meta-)algorithm

Example

- Ensemble: 48 models plus ELS^{30} , ELS^{20} and ELS^{10}
- Learning algorithm: extended exponential gradient, with $\eta = 10^{-5}$

INRIA

• Successful result: 19.9 μ g m⁻³

Conclusions

- Ensemble forecast relying on Polyphemus design
 - Technical Note: The air quality modeling system Polyphemus, Mallet, Quélo, Sportisse, Ahmed de Biasi, Debry, Korsakissok, Wu, Roustan, Sartelet, Tombette and Foudhil, ACPD, 2007
- Detailed uncertainty analysis (not shown here)
 - Uncertainty in a chemistry-transport model due to physical parameterizations and numerical approximations: An ensemble approach applied to ozone modeling, Mallet & Sportisse, JGR, 2006
- Model sequential aggregation to improve forecasts
 - Ensemble-based air quality forecasts: a multimodel approach applied to ozone, Mallet & Sportisse, JGR, 2006
 - Ozone ensemble forecast with machine learning algorithms, Mallet & Stoltz, in preparation
- Toward operational use
 - 43 models ran every day with Prév'air data, for 4 months in 2006 but without aggregation

