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INTRODUCTION

A major limitation of air quality forecasts is the
numerous uncertainties in the chemistry-transport
models (CTMs) and their input data. The physical
formulation of a CTM is uncertain. The numerical
discretization introduces further uncertainties in the
computed concentrations. The large set of input
data to the models (emissions, meteorological fields,
. . . ) shows high uncertainties, often ranging from
30% to 50%, sometimes reaching 100% or more.
Considering practical issues, one may mention the
uncertainties lying in the computer code (approxima-
tions, bugs) and in the use of the code (choices left
to the user, mistakes). All these uncertainties result
in uncertain output concentrations of observed and
unobserved pollutants.

The state (i.e., the concentrations vector) of a
CTM is of high dimension: its size is usually 106 or
107. Meanwhile about a few hundreds of compo-
nents are observed with monitoring stations or with
dedicated instrument during intensive observation
periods. Consequently, the models are slightly con-
strained by the observations and the uncertainties
in the forecasts remain, especially for unobserved
components.

In order to improve the forecasts, the current
developments mainly rely on advances in physics
and chemistry. Meanwhile the model performances
slightly increase, probably because the uncertainties
shadow the modeling efforts and because the mod-
els abilities are based on tuned configurations.

As a consequence, the models should be consid-
ered as stochastic models. In this context, ensemble
approaches, based on a set of simulations instead
of a single simulation, are suited to estimate the un-
certainties (Section 2) and to improve the forecasts
(Section 3). Multimodel ensembles are generated
within the framework of the Polyphemus air quality
modeling system (Section 1).

1 THE AIR QUALITY MODELING SYS-
TEM POLYPHEMUS

1.1 Purpose

Polyphemus [Mallet et al., 2007] is a rather new air
quality modeling system, developed by the École
Nationale des Ponts et Chaussées (ENPC), the
French National Institute for Research in Computer
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Science and Control (INRIA) and Électricité de
France (EDF R&D), with support from Institut de Ra-
dioprotection et de Sûreté Nucléaire (IRSN) and the
French National Institute for Industrial Environment
and Risks (INERIS).

It was built to cover the scope and the abilities of
modern air quality systems, notably ensemble fore-
casting and data assimilation. It was designed to
share developments inside and outside the system,
and to host several models. A strong flexibility at pre-
processing stages and simulation stage enables to
deal with multiple model configurations. High-level
methods that embed one or more CTMs, such as
data assimilation, are implemented independently of
the models, so that they may be applied to several
models available on the platform.

Polyphemus deals with applications at different
scales (from local to continental scale) with two
Gaussian models and two Eulerian models (Castor
and Polair3D). Its target pollutants are currently pas-
sive tracers, radionuclides, photochemical species
and aerosols.

1.2 Structure

The system is made of four independent levels: data
management, physical parameterizations, numeri-
cal solvers and high-level methods such as data as-
similation, ensemble forecast or model coupling.

At preprocessing stage, data from several sources
are managed, and several alternative parameteriza-
tions are available to compute the main fields (depo-
sition velocities, vertical diffusion coefficients, . . . ).
At simulation stage, the model is essentially a nu-
merical solver: most physical calculations have been
performed in preprocessing steps. Within a model,
the numerical schemes for advection, diffusion and
chemistry may be changed.

On top of the model(s), a driver implements a
method like data assimilation or Monte Carlo simu-
lations. In a driver, the model (or the models) is seen
as a black box with a light interface. The drivers
are implemented independently of the models so
that any driver may be used in combination with any
model (that has the light interface required by the
driver).

The development of such a system requires ad-
vanced technical features. Hence Polyphemus is
mostly written in C++.
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1.3 Uncertainty Estimation and En-
semble Forecasts in Polyphemus

In Polyphemus, estimation of uncertainties due to in-
put data may be carried out with drivers: a driver
for Monte Carlo simulations (perturbation of input
data fields), a driver to perform adjoint simulations
(sensitivity analysis). Note that the adjoint of one
CTM (Polair3D, gas phase version) is mainly ob-
tained through automatic differentiation.

In order to estimate the uncertainties coming
from the physical formulation (physical parameteri-
zations) and the numerical schemes, the flexibility
of Polyphemus is used to build multimodel ensem-
bles. Each model of the ensemble is built with a
different set of physical parameterizations and nu-
merical schemes. The raw data sources can also be
changed from one model to another (e.g., land use
data, or meteorological data).

2 UNCERTAINTY ESTIMATION

2.1 Experimental Setup

In this abstract, all base simulations have essentially
the same configuration. They are primarily set up to
estimate ozone concentrations over Europe in sum-
mer 2001. In short, the reference configuration is

1. domain: [40.25◦N, 10.25◦W] ×

[56.75◦N, 22.25◦E] with 0.5◦ resolution on
the horizontal and five vertical levels;

2. meteorological data: ECMWF1 fields (resolu-
tion of 0.36◦ × 0.36◦, TL511 spectral resolution
in the horizontal, 60 levels, time step of 3 hours,
12 hours forecast-cycles starting from analyzed
fields);

3. chemical mechanism: RACM [Stockwell et al.,
1997];

4. emissions: the EMEP2 inventory, converted ac-
cording to Middleton et al. [1990];

5. biogenic emissions: computed as proposed in
Simpson et al. [1999];

6. deposition velocities: the revised parameteriza-
tion from Zhang et al. [2003];

7. vertical diffusion: within the boundary layer, the
Troen and Mahrt parameterization described in
Troen and Mahrt [1986]; above the boundary
layer, the Louis parameterization found in Louis
[1979];

1European Centre for Medium-Range Weather Forecasts
2Co-operative Programme for Monitoring and Evaluation of the

Long-range Transmission of Air Pollutants in Europe

Input data Uncertainty
Cloud attenuation ±30%
Deposition velocities (O3 et NO2) ±30%
Boundary conditions (O3) ±20%
Anthropogenic emissions ±50%
Biogenic emissions ±100%
Photolysis rates ±30%

Table 1: Assumed uncertainties in input data.

8. boundary conditions: output of the global
chemistry-transport model Mozart 2 [Horowitz
et al., 2003];

9. numerical schemes: a first-order operator split-
ting; a direct space-time third-order advection
scheme with a Koren flux limiter; a second-
order order Rosenbrock method for diffusion
and chemistry [Verwer et al., 2002].

The simulated concentrations are compared to
observations from a set of monitoring stations in Eu-
rope (mainly in France and Germany) in summer
2001. On ozone peaks, the root mean square er-
ror is 22.4 µg m−3 and the correlation is 0.78.

2.2 Uncertainties Due to Input Data

In order to assess the uncertainties due to input data
(except base meteorological fields), we carried out
Monte Carlo simulations. We used the full config-
uration introduced in Section 2.1 over 7 days (plus
4 days of spin-up). The perturbations in the input
data were devised from several sources – mainly
Hanna et al. [1998, 2001]. See Table 1.

800 Monte Carlo simulations were performed.
About 200 to 400 simulations were needed for con-
vergence of highly averaged outputs such as the
spatio-temporal average of hourly ozone concentra-
tions (Figure 1). To summarize, the uncertainty (rel-
ative standard deviation) on mean ozone peaks was
about 8%. Details may be found in Mallet [2005].

2.3 Uncertainties Due to the Model
Formulation

The numerical model formulation is defined by a
set of physical parameterization and a set of nu-
merical schemes. In order to account for uncer-
tainties in the model formulation, a multimodel en-
semble was derived from the reference configu-
ration with changes in the parameterizations and
in the model discretization (resolution, numerical
schemes). For instance, two chemical mechanisms
(RACM and RADM [Stockwell et al., 1990]) were
used and three vertical diffusion estimates were con-
sidered. Changes in the input-data sources were
also included (e.g., land use categories). About 20
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Figure 1: Mean daily profiles for ozone (concentra-
tions in µg m−3). The probability density (shaded) is
shown in (b), together with the expectation (contin-
uous white line), the expectation plus ou minus the
standard deviation (black lines) and the profile of the
reference simulation (discontinuous white line).
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Figure 2: Ozone daily profiles of 48 models built in
Polyphemus. The concentrations are in µg m−3 and
are averaged over Europe (at ground level) and over
four months (mostly summer 2001).

changes were available, which enabled to build an
ensemble with 48 members.

The ensemble shows a wide spread – see Fig-
ure 2. The estimated uncertainty (relative standard
deviation) is over 15%. Details may be found in Mal-
let and Sportisse [2006b].

3 ENSEMBLE METHODS: COMBINING

MODELS

3.1 Introduction

Ensemble simulations bring more information than
a single simulation, which may be used to improve
the forecasts. As an illustration of the information
brought by the ensemble of 48 members, Figure 3
shows the index of the best model over Europe for
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Figure 3: Map of best model indices. In each cell of
the domain, the color shows which model (marked
with its index, in J0, 47K) gives the best ozone peak
forecast on 7 May 2001 at the closest station to the
cell center. It shows that many models can deliver
the best forecast at some point.

ozone peaks on 7 May 2001.
In order to overtake the limitations of uncertainties

in forecasts, we tried to linearly combine the models
of our multimodel ensemble (Section 2.3). At a given
forecast date, the weight associated with a member
of the ensemble may depend on past concentrations
(of all ensemble members) and on past observa-
tions. The methods are applied to ozone peaks in
the sequel.

The output of model m at time t (or day t as
we focus on ozone peaks) and position x (or sta-
tion x) is denoted Mm,t,x. The ensemble method
computes a linear combination with weights αm,t:
Et,x =

∑
m αm,tMm,t,x. Note that the weights

do not depend on the position. This way, it is
still possible to compute 2D fields of concentra-
tions as output of the modeling effort – although
this point needs further investigation. Moreover,
if the weights were dependent of the position, the
ensemble method would compete with purely sta-
tistical methods which are highly efficient and less
computationally expensive. The available observa-
tions are Ot,x. The performance of a combina-
tion E is measured by the root mean square error

RMSE(E,O) =
√

1

No

∑
t,x(Et,x − Ot,x)2, where

No is the total number of observations.
The reference to be improved is the best

model EB in the ensemble, which satis-
fies EBt,x = M bm,t,x where m̂ minimizes
RMSE(Mm, O). The reference performance
for ozone peaks is RMSE(EB,O) = 22.4 µg m−3.

The ensemble mean is defined as EMt,x =

Mm,t,x

m
, that is, with αm,t = 1

48
since there are

48 models in the ensemble. It shows poor perfor-
mances RMSE(EM,O) = 23.9 µg m−3. Hence
methods that take into account past observations
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Figure 4: Optimal weights in the least-squares
sense (ELS) against time, for three models.

are required.

3.2 Least-Squares Methods

Least-squares methods, called “superensembles” in
[Krishnamurti et al., 2000], minimize a squared er-
ror: ELSt,x =

∑
m αm,tMm,t,x where ∀t α·,t =

argmin
∑

x (Ot,x −
∑

m αm,tMm,t,x)
2. In this case,

all observations are taken into account (in the past
and in the future). Hence ELS shows the poten-
tial of least-squares methods: RMSE(ELS,O) =
12.0 µg m−3. Unfortunately, the optimal weights
show rapid variations in time, which makes them
hard to forecast (Figure 4).

Hence forecasting weights in this framework
requires some smoothing. Then the optimal
weights are computed over a learning period. This
learning period is a moving window of 30 days
preceding the day to be forecast. The combination
is ELS30

t,x =
∑

m α30

m,tMm,t,x where ∀t α30

·,t =

argmin
∑

t−30≤T<t,x (OT,x −
∑

m αm,T Mm,T,x)
2.

This method successfully computes improved fore-
casts: RMSE(ELS30, O) = 20.2 µg m−3 (against
22.4 µg m−3 for the best model). This time, the
weights are much smoother, which explains the
good performances – see Figure 5

For further details, refer to Mallet and Sportisse
[2006a].

3.3 Machine Learning Algorithms

Least-squares methods can be efficient, but – as far
as we know – there is no theoretical background to
support them. Other algorithms have been devel-
oped in the machine learning community. These al-
gorithms come with theoretical bounds on the dis-
crepancy between the performances of the fore-
cast combination and the performance of the best
combination (with constant weights). Preliminary
tests in Mallet and Sportisse [2006a] and undergo-
ing work (in collaboration with Gilles Stoltz, École
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Figure 5: Weights associated with ELS30 against
time, for three models (same models and same or-
dinate range as in Figure 4).

Normale Supérieure de Paris) show that good per-
formances may be reached with these algorithms:
the root mean square error may decrease down to
19.5 µg m−3.

CONCLUSION

The air quality modeling system Polyphemus en-
ables ensemble forecasting thanks to its flexible
structure. Monte Carlo simulations were carried to
assess the uncertainties due to input data (except
base meteorological fields). The uncertainties due
to the model formulation were also studied through
a multimode ensemble, and a strong impact on the
output uncertainties was found. The multimodel en-
semble brings useful information. Its members can
be efficiently combined to improve the forecasts.

Among the next steps, one may find the use of
ensembles in daily operational forecasts. Polyphe-
mus has already run for several months in ensem-
ble mode (with 43 models and daily forecasts) for a
test on the operational platform Prév’air (operated by
INERIS), but no online combination of the members
was performed.
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transport – Application à la simulation numérique
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