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1. INTRODUCTION 
 
Standard evaluations of air quality models rely 

heavily on a direct comparison of monitoring data 
matched with the model output for the grid cell 
containing the monitor's location (e.g. Eder and Yu 
2006, Appel et al. 2007).  While such techniques 
may be adequate for some applications, 
conclusions are limited by such factors as the 
sparseness of the available observations (limiting 
the number of grid cells at which the model can be 
evaluated), potential measurement error in the 
observations, and the incommensurability between 
volume-averages and point-referenced 
observations.  While we focus most closely on the 
latter problem, we find that it cannot be addressed 
without some discussion of the others.   Our 
approach uses simulated datasets to demonstrate 
cases in which incommensurability is more likely 
to adversely affect a traditional analysis.  Future 
work will illustrate the impact on model evaluation 
analysis using a comparison of CMAQ simulations 
and observed maximum 8 hour ozone. 

 
2. SIMULATED “PERFECT-WORLD” 
EXAMPLE WITH WEAK CORRELATION 

 
For the purposes of illustration, we simulate 

pollutant fields with both strong and weak 
correlation structures.  Fig. 1 shows an example of 
such a field with weak spatial dependence.  The 
superimposed gray lines show where our “grid 
cell” boundaries are located.  The circles 
designate 26 points chosen to represent 
observations in this domain.  Using this field, we 
can find the average in each grid cell, as shown in 
Fig. 2. 

We can now compare our hypothetical 
observations with the averages of the cells in 
which they fall.  This allows us to assess the 
outcome of a traditional analysis technique 
assuming a perfect scenario in which the model 
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output is in perfect agreement with the “true” 
process and there is no measurement-related or 
fine-scale variability in the observations. The 
scatterplot in Fig. 3 shows the observations vs. the 
grid cell averages, with a red 1:1 line shown for 
reference.  We note that the correlation between 
the two is only about 0.84.  This case study 
confirms that in a situation in which the extent of 
the spatial correlation is quite short-range, a 
traditional analysis can yield misleading results, 
even if the model and observations are actually in 
perfect agreement.  However, this situation 
becomes much less extreme when the spatial 
correlation is farther-reaching, i.e. when the field is 
more spatially homogeneous.  
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Fig. 1. Simulated data with short-range spatial 
dependence.  In this case, the correlation between 
neighboring sites becomes negligible after 
approximately 30 units. 
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Fig. 2. Grid cell averages based on the simulated data 
portrayed in Fig. 1.  Each grid cell is a square with a 
side length of 12 units. 
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Fig. 3. Observations vs. grid cell averages, based on the 
data shown in Fig. 1 and Fig. 2. 
 
3. SIMULATED EXAMPLE WITH 
STRONGER CORRELATION AND 
MEASUREMENT ERROR 

 
Fig. 4 gives an example of simulated field with 

correlation that becomes effectively zero only at 
distances greater than about 160 units.  This 
means that points near the center of our region 
are still correlated with those at the edges, at least 
to some extent, accounting for the smooth, 
homogeneous nature of the picture.  Fig. 5 shows 
the grid cell averages calculated based on this 
field. 

Unlike the example in the previous section, in 
this case we allow for a slightly more realistic 
situation in which the observations, while taken at 
the locations designated by the black circles in 
Fig. 4, have an additional error component to 
represent measurement or other fine-scale error.  

Note that we are still calculating the grid cell 
averages directly from the underlying field shown 
in Fig. 4, so we continue to assume that the model 
output is equal to this “true” simulated field, i.e. no 
model error. 

Fig. 6 shows the observations (with error as 
described above) plotted against the averages for 
grid cells in which they fall.  As before, we see 
substantial variability around the red 1:1 reference 
line, with a correlation coefficient of approximately 
0.87.  However, further analysis shows that in this 
more spatially homogeneous field, most of this 
variability comes from the error associated with 
the observations, rather than from the 
incommensurability issue.  
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Fig. 4. Simulated data with long-range spatial correlation 
structure. 
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Fig. 5. Grid cell averages based on the simulated data 
portrayed in Fig.4.  Each grid cell is a square with a side 
length of 12 units. 
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Fig. 6. Observations vs. grid cell averages, based on the 
data shown in Fig. 4 and Fig. 5. 

 
4. SIMULATED EXAMPLE COMPARING 
KRIGING TECHNIQUES FOR USE IN 
MODEL ASSESSMENT 

 
In the preceding sections, the comparison of 

simulated grid cell averages and observations was 
facilitated mostly by the scatterplots in Fig. 3 and 
Fig. 6.  Using this approach, only grid cells which 
contain observations can be evaluated.  As 
mentioned in the introduction, we are interested in 
investigating statistical techniques which make 
use of the observational data to estimate the level 
of the field at unobserved locations.  We can then 
compare the grid cell averages with these 
estimates.  

Given knowledge of or an estimate of the 
spatial correlation structure, kriging is a technique 
which can be used to make such estimates.  While 
we are interested in other techniques as well, we 
focus on kriging here primarily because of its ease 
of use (it is available in many software packages) 
and its ability to provide error estimates associated 
with its predictions.  We return to our simulations 
and the discussion in the preceding sections in an 
attempt to illustrate how incommensurability 
affects our choice of kriging techniques.  
 
4.1 Kriging to the grid cell centers 

 
A typical kriging procedure begins by 

assessing the correlation structure inherent in the 
spatial field.  In our case, since the data are 
simulated, this correlation structure is known.  In 
more realistic practice, this would rarely be the 
case, so techniques such as variogram estimation 
might be used to assess this structure. 

The practitioner must identify the locations at 
which estimates are desired.  In classical kriging, 

this would just be a series of points, most probably 
the centers of the grid cells to be evaluated.  The 
kriging procedure provides the estimate at each of 
these points and an estimate of the standard error, 
based on the provided observational and 
correlation information. 

Fig. 8 shows the kriging predictions made 
based on the observations shown in Fig. 7.  
Comparison with Fig.5, which contains the true 
grid cell averages for this simulation, shows that 
our estimates are reasonable ones for the most 
part.  As is the case with most such estimation 
procedures, we see notable discrepancies where 
observational information is most limited, such as 
at the edges and in the right portion of the region.  
Fig. 8 also shows the well-known smoothing effect 
of kriging (and other similar methods), in which the 
extremes are not always well-captured.  This is 
particularly noticeable in the “hot spot” in the right 
portion of the region, where the situation is further 
complicated by the relative scarcity of 
observational data. 

We can also judge the performance of the 
kriging technique based on Fig. 9, which shows 
(for a subset of the grid cells) each kriging 
estimate vs. the true grid cell value (represented 
by points).  The plot also displays 95% confidence 
bounds, determined using the kriging error 
estimates.  In this case, the intervals based on 
kriging to the center points of all 256 grid cells (not 
just the subset shown), include the true value.  We 
would expect approximately 243 (95% of 256) of 
the intervals to miss their target.  This indicates 
that the error estimates are not well-calibrated for 
estimating spatial average, and we explore this 
issue further in the next section. 

 

0 50 100 150

0
50

10
0

15
0

50

55

60

65

70

 
Fig. 7. Observations simulated with fine-scale error at 
the locations shown in Fig. 4 (long-range spatial 
correlation) 
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Fig. 8. Estimates yielded by kriging the observations in 
Fig. 7 to the grid cell centers (long-range spatial 
correlation) 

 

45 50 55 60 65 70 75

45
50

55
60

65
70

75

Grid cell averages

R
es

ul
ts

 o
f k

rig
in

g 
to

 c
el

l c
tr

s.

 
Fig. 9. Sample of results yielded by kriging to the grid 
cell centers (long-range spatial correlation) 
 
4.2 Block kriging 

 
Given our discussion of the potential problems 

associated with incommensurability and the 
calibration issues discussed in the previous 
section, it is reasonable to question whether we 
should be using the kriging technique to estimate 
the spatial field point-wise at the grid cell centers.  
Statistical reasoning (Gelfand et al. 2001) 
indicates that estimates of variability and error are 
generally sensitive to the incommensurability 
issue, with estimates of averages less variable 
than estimates for individual points. The block 
kriging technique (e.g., Goovaerts 1997, pg. 152) 
allows us to adjust for incommensurability by 
estimating the spatial field at a lattice of points 
within each of the grid cells.  The estimate for the 
grid cell average is then given by the average of 
the estimates for all the lattice points, and the 

variance of the estimate is given by a function of 
the covariances among all the lattice points. 

Fig. 10 shows the block kriging estimates for 
each grid cell, based once again on the 
observational data in Fig. 7.  Comparison with Fig. 
8 shows that the estimates given by the two 
kriging techniques are very similar, with only minor 
differences visible on close inspection.  This is 
what we would expect, especially with the effective 
correlation range extending well beyond the 
distance spanned by not just one, but several, grid 
cells. 

However, Fig. 11 shows that the error 
estimates and resulting confidence intervals (in 
green if the true value is captured and red 
otherwise) are quite different for the two kriging 
techniques.  The confidence intervals depicted in 
Fig. 11 are noticeably shorter than those in Fig. 9, 
due to smaller errors associated with estimating 
an average rather than an individual location.  The 
block kriging method showed better calibration, 
with 247 (about 96%) of the confidence intervals 
enclosing the actual grid cell average. This further 
indicates that the errors associated with kriging to 
the cell centers are estimated to be higher than 
what is needed for kriging to grid cell averages.  
Achieving a more accurate estimate of the error 
associated with the kriging technique allows us to 
better assess model performance by giving us 
information about differences which are more 
likely due to estimation error than to model error. 
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Fig. 10. Estimates yielded by block kriging the 
observations in Fig. 7 (long-range spatial correlation) 
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Fig. 11. Sample of results yielded by block kriging (long-
range spatial correlation) 

 
4. DISCUSSION 
Analysis such as block kriging provides one 
approach to address the difference in variability 
between a point measurement and a volume-
average prediction by using a statistical model to 
characterize sub-grid variability based on 
observed values.  An alternative approach is to 
use a nested grid modeling system of fine scale 
features to simulate sub-grid variability as 
proposed by Ching et al. (2006).   Although in the 
context of air quality modeling most evaluations 
have not considered this issue of incommens-
urability in detail, some authors have considered 
the problem and developed alternative methods 
for comparing measurements and model output 
(Swall and Davis 2006).  The more sophisticated 
statistical modeling provides additional 
information, which is not available in a matched 
model to observation type comparisons.  Spatial 
analysis of model errors is used to determine 
regions where model output is significantly 
different from observation-based estimates.  
These areas may be used for diagnostic 
evaluation to identify the source of consistent 
model errors.  The added benefit of this extra layer 
of analysis will depend on the goals of a particular 
model evaluation.  Analysis of observed and 
modeled ozone data will be used to further 
compare standard evaluation methods and more 
complex statistical modeling in an operational 
setting. 
 

 
 
 
 
 
 

DISCLAIMER: The research presented here 
was performed under the Memorandum of 
Understanding between the U.S. Environmental 
Protection Agency (EPA) and the U.S. Department 
of Commerce's National Oceanic and Atmospheric 
Administration (NOAA) and under agreement 
number DW13921548.  This work constitutes a 
contribution to the NOAA Air Quality Program.  
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and approved for publication, it does not 
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