

AERMOD-HPC A HIGH PERFORMANCE COMPUTING VERSION OF AERMOD

George Delic *

HiPERiSM Consulting, LLC, Durham, NC, USA

Arnold R. Srackangast
AS1MET Services, Blanco TX, USA

1. INTRODUCTION

HiPERiSM Consulting, LLC, (Durham, North
Carolina) has linked with AS1MET Services
(Blanco, Texas) to form a joint venture, HiCLAS1
(http://www.hiclas1.com), dedicated to bringing
High Performance Computing (HPC) capability to
Environmental Modeling. The HiCLAS1 mission is
to develop (or enhance) software and improve
performance on current and future computers for
legacy Air Quality Models (AQM). The first model
chosen for performance enhancement by
HiCLAS1 is the U.S. EPA's AERMOD developed
by the U.S. EPA Office of Air Quality Planning and
Standards (OAQPS), Emissions Monitoring and
Analysis Division (EMAD), at the U.S. EPA in
Research Triangle Park, North Carolina, U.S.A
(SCRAM). In-house Quality assurance testing and
results from Beta testers show performance of the
serial version of AERMOD-HPC that is 1.95 to
3.43 times faster than the EPA distribution of
AERMOD. The purpose of this presentation is to
provide quantitative evidence of the measured
hardware performance metrics to demonstrate
how the improvements in efficiency are achieved.
Results with the serial version of AERMOD-HPC
are presented for Intel Pentium Xeon processors.
The subject of numerical differences is taken up in
technical reports available on-line (HiCLAS1).

2. CHOICE OF HARDWARE AND
OPERATING SYSTEM

The hardware used for the results reported
here is the Intel Pentium 4 Xeon processor with
separate platforms using the Linux™ operating
systems for both 32-bit and 64-bit platforms,
respectively. The hardware used for the results
reported here is the Intel Pentium 4 Xeon (P4) and
Pentium Xeon 64EMT (P4e) processors.

* Corresponding author address: George Delic,
HiPERiSM Consulting, LLC, P.O. Box 569, Chapel Hill,
NC 27514-0569. Email: george@hiclas1.com

The operating system (OS) is HiPERiSM
Consulting, LLC’s modification of the Linux™ 2.6.9
kernel to include a patch that enables access to
hardware performance counters. This modification
allows the use of the Performance Application
Programming Interface performance event library
(PAPI, 2005) to collect hardware performance
counter values as the code executes. Results for
selected performance metrics are presented with a
view to giving insight into how the application is
mapped to the architectural resources by an un-
named compiler.

3. BENCHMARK TIMINGS

Four benchmarks are used with the number of
sources varying from 10 to 963, number of
receptors from 771 to 916, and the number of
meteorological hours from 2160 to 8760. Details
on the benchmarks are available elsewhere
(HiCLAS1). Two version of the U.S. EPA’s
AERMOD model are used here: the executable
distribution, designated AERMOD-EPA, and the
version compiled from the (unmodified) source
distribution designated as AERMOD-EPA/SRC.
The U.S. EPA source and executable are
available on-line (SCRAM).

To create the High Performance Computing
(HPC) version of AERMOD the source code for
the U.S. EPA distribution was progressively
modified to enhance performance. Speedup of the
HPC version over the EPA model is shown in Fig.
1 (AERMOD-HPCS versus AERMOD-EPA) and
Fig. 2 (AERMOD-HPCS versus AERMOD-
EPA/SRC). The results of Fig. 2 are for both
versions compiled from source with identical
compiler options.

Whether comparing against the U.S. EPA
executable or source code compiled with the same
compiler options AERMOD-HPCS always delivers
superior performance. The remainder of this report
gives some in reasons as to why this is the case.

 1

Cases 1, 2, 4, and 5 on machines A to C

0.00

0.50

1.00

1.50

2.00

2.50

3.00

A:1 B:1 C:1 A:2 B:2 C:2 A:4 B:4 C:4 A:5 B:5 C:5

Machine and Case label

Sp
ee

du
p

of
 A

ER
M

O
D

-H
PC

S
ov

er
 A

ER
M

O
D

-E
PA

Fig. 1 displays the ratio of runtimes for AERMOD-HPCS
and AERMOD-EPA for three Pentium 4 Xeon machines
(A to C) with a 32-bit Windows OS. This shows that, for
four Cases, performance enhancement ranges from 1.9
to 2.77 times faster than AERMOD-EPA (depending on
the platform and data set used in the benchmark).

Pentium 4 Xeon 64EMT (64-bit Linux)

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50

p4e-case1 p4e-case2 p4e-case4 p4e-case5

Case

Sp
ee

du
p

=
EP

A
/H

PC
 ti

m
e

Fig.2. Speedup of AERMOD-HPCS as measured by the
ratio of the wall clock time for the U.S. EPA AERMOD
version (compiled from source code) divided by the wall
clock time for AERMOD-HPCS for the same compiler
options for four cases.

4. HARDWARE PERFORMANCE EVENTS

The hardware used for the results reported
here is the Intel Pentium 4 Xeon (P4) and Pentium
Xeon 64EMT (P4e) processors. For this hardware
performance counters were used to measure
performance metrics and some values are
summarized below.

4.1 Operations and instructions

AERMOD-HPCS delivers higher Mflops rates
as is shown in Fig. 3 for the 64-bit Linux case.

Pentium 4 Xeon 64EMT (64-bit Linux)

0
20
40
60
80

100
120
140

p4
e-e

pa
-ca

se
1

p4
e-h

pc
-ca

se
1

p4
e-e

pa
-ca

se
2

p4
e-h

pc
-ca

se
2

p4
e-e

pa
-ca

se
4

p4
e-h

pc
-ca

se
4

p4
e-e

pa
-ca

se
5

p4
e-h

pc
-ca

se
5

Case

M
ill

io
n

flo
at

in
g

po
in

t
op

er
at

io
ns

 p
er

 s
ec

on
d

(M
flo

ps
)

Fig. 3 Mflops for AERMOD in EPA (epa) and HPCS
(hpc) versions for four cases.

One important contributing factor to higher
Mflops is that AERMOD-HPCS delivers higher
vector/SSE instruction rates as shown in Fig. 4.
However, performance gains for AERMOD from
enhanced vector instructions alone is limited
because of the lack of vector loop structure and
the predominance of control transfer instructions.
These stall the vector pipeline and cycles are lost
to loading of new instructions.

Pentium 4 Xeon 64EMT (64-bit Linux)

0
10
20
30
40
50
60
70
80
90

100

p4
e-e

pa
-ca

se
1

p4
e-h

pc
-ca

se
1

p4
e-e

pa
-ca

se
2

p4
e-h

pc
-ca

se
2

p4
e-e

pa
-ca

se
4

p4
e-h

pc
-ca

se
4

p4
e-e

pa
-ca

se
5

p4
e-h

pc
-ca

se
5

Case

M
ill

io
n

ve
ct

or
 in

st
ru

ct
io

ns
pe

r s
ec

on
d

Fig. 4 Vector instruction rates for AERMOD in EPA
(epa) and HPCS (hpc) versions for four cases.

4.2 Memory footprint

For AERMOD in general, the rate of total
memory instructions issued is voluminous. The
consequence of AERMOD’s memory footprint is
that the path to memory becomes a critical
performance bottle-neck. This bottle-neck is
somewhat ameliorated in AERMOD-HPCS
compared to AERMOD-EPA as is described in the
following.

 2

Pentium 4 Xeon 64EMT (64-bit Linux)

0
100
200
300
400
500
600
700
800
900

1000

p4e-
epa-

case1

p4e-
hpc-

case1

p4e-
epa-

case2

p4e-
hpc-

case2

p4e-
epa-

case4

p4e-
hpc-

case4

p4e-
epa-

case5

p4e-
hpc-

case5

Case

M
em

or
y

in
st

ru
ct

io
ns

 p
er

flo

at
in

g
po

in
t i

ns
tr

uc
tio

n

Fig. 5 Memory instructions per floating point instruction
for AERMOD-HPCS (hpc) compared to that for the U.S.
EPA’s distribution (epa) for four cases.

Pentium 4 Xeon 64EMT (64-bit Linux)

0
5

10
15
20
25
30
35
40

p4e-
epa-

case1

p4e-
hpc-

case1

p4e-
epa-

case2

p4e-
hpc-

case2

p4e-
epa-

case4

p4e-
hpc-

case4

p4e-
epa-

case5

p4e-
hpc-

case5

Case

M
em

or
y

in
st

ru
ct

io
ns

 p
er

 fl
op

Fig. 6 Memory instructions per flop for AERMOD-HPCS
(hpc) compared to that for the U.S. EPA’s distribution
(epa) for four cases.

Fig. 5 shows the load balance of memory
versus floating point instructions and
demonstrates the extent to which AERMOD is a
memory-bound application. As a consequence,
AERMOD is extremely sensitive to any inefficiency
in memory access. It is notable that AERMOD-
HPCS reduced this load imbalance somewhat, but
it is still critical. Fig. 6 shows that for each flop
there are more then 14 memory instructions in all
cases on either P4 (not shown) or P4e platforms.
This is a gross imbalance suggesting that the CPU
is starved of data and spends excessive cycles in
an idle state.

4.3 Branching instructions

Control transfer instructions are a significant
source of lost CPU cycles in AERMOD and chief
among these are branch instructions. Mispredicted
branch instructions on deep pipelined processors

are an important cause of lost performance,
because instructions in the mispredicted path are
cancelled and operations are not completed. The
pipeline is flushed and new instructions are loaded
with the result that cycles are lost to arithmetic
performance. Fig. 7 shows that in all cases, on
both 32-bit (not shown) and 64-bit platforms,
AERMOD-HPCS has reduced mispredicted
branch instruction rates and this correlates
positively with higher Mflops.

Pentium 4 Xeon 64EMT (64-bit Linux)

1.0E+08

1.0E+09

1.0E+10

1.0E+11

p4e-
epa-

case1

p4e-
hpc-

case1

p4e-
epa-

case2

p4e-
hpc-

case2

p4e-
epa-

case4

p4e-
hpc-

case4

p4e-
epa-

case5

p4e-
hpc-

case5

Case
To

ta
l n

um
be

r o
f m

is
pr

ed
ic

te
d

br
an

ch
 in

st
ru

ct
io

ns

Fig. 7 Logarithm of total number of mispredicted branch
instructions for AERMOD-HPCS (hpc) compared to that
for the U.S. EPA’s distribution (epa) for four cases.

4.4 TLB Cache usage

The translation lookaside buffer (TLB) is a
small buffer (or cache) to which the processor
presents a virtual memory address and looks up a
table for a translation to a physical memory
address. If the address is found in the TLB table
then there is a hit (no translation is computed) and
the processor continues. The TLB buffer is
usually small, and efficiency depends on hit rates
as high as 98%. If the translation is not found (a
TLB miss) then several cycles are lost while the
physical address is translated. Therefore TLB
misses degrade performance. In the case of
AERMOD it is the instruction TLB misses that are
critical. Higher instruction TLB miss rates suggest
that the processor pipeline stalls more frequently
because of a higher rate of control transfer
instructions. This is due to numerous procedure
calls and voluminous mispredicted branch
instruction rates.

 3

Pentium 4 Xeon (32-bit Linux)

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

p4-epa-
case1

p4-hpc-
case1

p4-epa-
case2

p4-hpc-
case2

p4-epa-
case4

p4-hpc-
case4

p4-epa-
case5

p4-hpc-
case5

Case

TL
B

 m
is

se
s

pe
r s

ec
on

d

DM
IM

Fig. 8 TLB misses per second for AERMOD-HPCS
(hpc) compared to that for the U.S. EPA’s distribution
(epa). Note that the instruction misses (IM) are reduced
in AERMOD-HPCS for each of four cases.

While the TLB data miss rates (DM) have
increased in AERMOD-HPCS relative to the EPA
version, performance has improved, suggesting
that it is the TLB instruction miss rates that are
important for performance in AERMOD. The
AERMOD-HPCS version is more efficient in
reducing instruction TLB miss rates (IM) through
optimization and resource allocation compared to
the EPA version. The most dramatic reduction is in
Case 2 for the 32-bit platform, as shown in Fig. 8,
and this explains (in part) why AERMOD-HPCS
has so much better performance compared to the
EPA version (see Case 2 in Fig. 2).

4.5 L1 Cache usage

A cache miss occurs when data or instructions
are not found in the cache and an excursion to
higher level cache, or memory, is necessitated.
Cache misses result in lost performance because
of increasing latency in the memory hierarchy.
Memory latency is smallest at the register level
and increases by an order of magnitude for a L1
cache reference, and another order of magnitude
to access L2 cache. In the case of AERMOD this
analysis will focus on the L1 cache behavior. Fig.
9 shows L1 cache miss rates for data (DCM) and
instructions (ICM). Even though the ICM rate has
been scaled the reduction for AERMOD-HPCS
versus the EPA version is evident and has a
positive correlation with the TLB instruction miss
rate reduction shown in Fig. 8.

Pentium 4 Xeon (32-bit Linux)

0
10
20
30
40
50
60
70
80
90

p4
-ep

a-c
as

e1

p4
-hp

c-c
as

e1

p4
-ep

a-c
as

e2

p4
-hp

c-c
as

e2

p4
-ep

a-c
as

e4

p4
-hp

c-c
as

e4

p4
-ep

a-c
as

e5

p4
-hp

c-c
as

e5

Case

L1
 c

ac
he

 m
is

se
s

(m
ill

io
n

pe
r s

ec
on

d) DCM
ICM x 100

Fig. 9 Million L1 cache misses per second for
AERMOD-HPCS (hpc) compared to that for the
U.S. EPA’s distribution (epa) for four cases.

5. WHY IS AERMOD-HPC FASTER?

The code transformation applied in AERMOD-
HPCS take cognizance of procedures occurring at
the leaves of a deep calling tree. Such procedures
invariably have no loop structure but consist of
simple arithmetic statements and conditional code
blocks. The most frequently called procedures
typically have little arithmetic work. These are
some of the reasons for lack of vectorizable loops
and the high rates of branching instructions in the
U.S. EPA version of AERMOD. As a result the
extremely high instruction TLB misses for
AERMOD are a critical source of performance
limitations. High memory instruction rates are due
to high TLB instruction miss rates and also to
correlated L1 instruction cache miss rates. This
behavior is ameliorated by the improved efficiency
of the AERMOD-HPCS version in reducing the
performance consequences of this behavior.
AERMOD-HPCS is faster than the U.S. EPA
version AERMOD-EPA/SRC because it delivers:

• Higher Mflops rates
• Lower number of memory instructions per

floating point instruction
• Lower mispredicted branch instruction

rates
• Lower instruction TLB miss rates
• Lower L1 instruction cache miss rates

 4

6. CONCLUSIONS

This performance analysis of the U.S. EPA
version of AERMOD, shows that it is a memory
intensive application with large rates of control
transfer instructions such as branching logic and
procedure calling overhead. These features result
in large observed rates for branching instructions
and instruction TLB misses. These, in turn, result
in stalled pipelines and cycles lost to arithmetic
operations. In combination these characteristics of
the AERMOD code place a limit on the optimal
performance possible from it on commodity
platforms. This is because, by design, commodity
hardware solutions offer a cost effective
compromise between processor clock rates, cache
size, and bandwidth (or latency) to memory.

The AERMOD-HPCS version goes some way
to ameliorate these performance limitations. As a
result gains in computational efficiency translate
into reduced wall clock time. However, there is still
scope for further improvements and progress will
be reported in subsequent reports at the HiCLAS1
URL where the AERMOD-HPCS version of
AERMOD is available at the download pages
(HiCLAS1).

References

HiCLAS1: Further details are available from the
HiCLAS1 URL at http://www.hiclas1.com.

PAPI, 2005: Performance Application
Programming Interface, http://icl.cs.utk.edu/papi.
Note that the use of PAPI requires a Linux kernel
patch (as described in the distribution).

SCRAM: AERMOD is available at U.S. EPA,
Technology Transfer Network, Support Center for
Regulatory Air Models
http://www.epa.gov/scram001/.

 5

http://www.hiclas1.com/
http://icl.cs.utk.edu/papi
http://www.epa.gov/scram001/

