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1 INTRODUCTION

An integrated approach to modeling atmospheric
chemistry with trace gas data assimilation is a rela-
tively new focus of the atmospheric chemistry mod-
eling community. It is expected that the predictive
capability of CTMs can be significantly improved by
assimilating measurements of key trace gases from
satellite-based platforms and surface monitors. En-
semble adjustment Kalman filter (EAKF) methods
are simple to implement, don’t need adjoints and
backward integration, and are capable of handling
non-Gaussian model errors. These factors have led
to the adoption of EAKF methods for weather and
climate simulations. Additionally, EAKF provides
a measure of error resulting from the assimilation.
We have combined EAKF data assimilation with a
single-tracer version of CMAQ. The Data Assimila-
tion Research Testbed (DART), developed by NCAR,
was used to create an EAKF enabled CMAQ for
assimilating CO. DART provides a modular envi-
ronment that can integrate dynamical models with
various assimilation techniques. Specifically, we ran
CMAQ in ensemble adjustment Kalman filter mode
to assimilate both synthetic and real observations of
CO for the period of June 2001. We argue that it is
a viable approach for further data assimilation ex-
periments and potentially for air quality forecasting.

∗Corresponding author: Alexis Zubrow, the Center for In-
tegrating Statistical and Environmental Science (CISES), the
University of Chicago, 5734 S. Ellis Ave. Chicago, IL 60637;
email: azubrow@uchicago.edu.

2 MODIFICATIONS TO CMAQ

A single tracer version of CMAQ (Im et al. 2005)
was modified to model Carbon Monoxide (CO). CO
has a relatively simple chemistry given OH; there-
fore our numerical experiments could focus on the
data assimilation of a single trace and not have to
consider multiple chemical reactions in evaluating
the results. The relatively long life of CO means
that assimilations would have influence beyond one
diurnal cycle. Because of it’s long memory, CO ex-
periments may help determine the potential of data
assimilations to improve forecasts.

Our modified CMAQ model, from here out
CCTM CO, retained the ingestion of emissions and
advection of CO from the full CMAQ model. The
model transports only one tracer (CO) and performs
the following chemistry:

∂[CO]

∂t
= Kform[OH][HCOH]−Koh[CO][OH] (1)

where Koh and Kform are the reactions rates for
OH and formaldehyde, respectively. The concen-
trations of OH and formaldehyde are fixed and up-
dated hourly from a full offline CMAQ run. The
OH and formaldehyde concentrations are read into
CCTM CO from a separate file (OH CONC) during
the run time of each ensemble member.

A second reason for creating CCTM CO is the
computational cost of running multiple ensemble mem-
bers. For our relatively small beowulf cluster (16
processors), the full CMAQ model would make en-
semble runs of 10 or more realizations impractical.
The full CMAQ model takes approximately 50 min-
utes per model day on 4 processors. The CCTM CO

1



runs in 3 to 4 minutes for the same domain on 1 pro-
cessor.

3 DART

The Data Assimilation Research Testbed (DART)
was developed at the National Center for Atmo-
spheric Research (NCAR). It provides a modular ap-
proach for testing various data assimilation schemes,
based on ensemble simulations 1. It uses a Bayesian
approach for data assimilation. In DART, the prior
is the model output, in other words it is our best esti-
mation of the state of the system (the model) before
we assimilate any observations. The spread of the
prior is represented by the spread of the ensemble
members, each a unique realization of the model. In
other words, the value of the ensemble members at
a particular location is the sample from the prior
at that location. The observation likelihood is the
distribution of each observation. By combining the
prior and the likelihood, a posterior estimate can be
generated. The posterior is our updated state of the
model after the data has been assimilated; our best
understanding of the system given the model and
the data. In the parlance of DART, the process of
combining the prior with the likelihood is called “fil-
tering”. The model values, either in the prior or in
the posterior, is called the “state variable”.

DART provides multiple types of filters to use for
data assimilation. We chose the Ensemble Adjust-
ment Kalman Filter (EAKF) because of a series of
advantages (Anderson 2001). First, EAKF reduces
the extent of the problem by only looking at the
correlation between observations and nearby state
variables. In other words, one can limit the calcula-
tion updates to only model values within a certain
spatial region (a cutoff). Second, the relative rela-
tionship between the prior ensembles is maintained
in the posterior ensembles. For example if ensemble
1 was predicting a lower value of CO in a region than
ensemble 2 in the prior, then the posterior would still
have ensemble 1 with a lower prediction than ensem-
ble 2. The EAKF first shifts the prior ensembles to
match the posterior mean, then adjusts their spread
to the posterior variance. In this way, individual
ensemble trajectories are more physically relevant.
Third, EAKF is relatively computationally efficient.
The model does need to be run N times, which is a
fixed cost for any ensemble method. The cost of fil-
tering is on the order O(mnN), where m is the num-
ber of observations, n is the size of the state variable
(the model), and N is the number of ensembles.

1See http://www.image.ucar.edu/DAReS/DART/ (Sept
2006) for more details.

Creating an interface between DART and CMAQ
had two stages. First, the development of a DART
module in FORTRAN 90 provides necessary infor-
mation to DART about translating back and forth
between the model state and the observation state.
DART does all of it’s assimilation in observation
space:

Y = H(x) + ǫ (2)

where x is the model state, Y is the expected obser-
vation, H is a function that gives the expected value
of the observation given the model state, and ǫ is
the error. The DART module needs to define this
function for each type of observation. In the case of
surface observations, this may be as simple as near-
est neighbor or bilinear interpolation (the latter in
our case). For other observation types, for example
with MOPITT satellite data , this H function may
be much more complicated (Emmons et al. 2004).
The module also creates functions for determining
which state variables are “close” given a certain dis-
tance from an observation and provides additional
information about the model.

The second stage is coordinating DART’s filter
with the CCTM CO ensembles. We developed a se-
ries of python programs using the ioapiTools 2 mod-
ule that could run CCTM CO (and CCTM for that
matter) directly from python, translate the prior
(the CMAQ CONC file) to DART format, then take
the DART output and translate it back to CMAQ
format.

The flow of data through the overall assimilation
system is: (a) start the ensemble of CCTM CO mod-
els from the perturbed initial conditions (see next
section for details), (b) run the ensembles forward
to some date; (c) take the last hour of the CONC
file and produce the priors for DART; (d) DART ap-
plies the EAKF filter to the observations prepared
for that period; (e) take the posterior from DART
and translate the data into initial condition files for
the next stage of the CCTM CO run; repeat contin-
uing from (b).

4 PRELIMINARY RESULTS

4.1 Perturbing the Ensembles

Developing the ensembles is a key component
to the success or failure of the data assimilation.
Our initial experiments have only modified the ini-
tial conditions (IC). We tested various schemes for

2See http://www-pcmdi.llnl.gov/software-
portal/Members/azubrow/ioapiTools/index html (Sept
2006) for more details.
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Figure 1: The simulated surface from the Matérn
function, which is used to perturb the CO IC

perturbing the IC. We started with applying Gaus-
sian noise to the CO IC. This had unintended conse-
quences, namely that the CO values would jump dra-
matically. A large value of CO could advect through
a region, creating non-physical, dramatic shifts in
CO concentrations at particular points in the model.

A second approach was to apply a constant per-
turbation. In other words, multiply the whole CO
field by a single value. This had the consequence of
smoothing out the previous, excessive spatial varia-
tion. But, the constant perturbation was too smooth,
in fact it created no variation in the spatial structure
of the IC.

The third approach was to apply Gaussian noise,
which included spatial structure. In our case, we
have used a Matérn function (Handcock and Stein
1993) with a spatial range of 200 km and smoothness
parameter of 0.5 (an exponential decay function) to
create spatially correlated noise. This Matérn func-
tion can be used to simulate a series of surfaces that
have mean 0 and a σ of our choosing. For exam-
ple, Figure 1 is the surface for the second ensemble
member. The resulting surfaces are then added to
CO IC to create N IC files. The mean of all the N
perturbed IC files is CO IC, the standard deviation
is σ. Each ensemble has been perturbed from CO
IC, but the perturbation is not excessively “patchy”;
it retains some spatial correlation.

A related issue to perturbing the ensembles is
how to maintain the ensemble spread. Our ensem-

bles collapse over time due to diffusion and iden-
tical emissions and meteorology. If the ensembles
collapse, then data does not impact it during the fil-
tering stage. In other words, a collapsed ensemble
indicates that the prior is very certain (all the en-
semble members have the same value), therefore the
prior and posterior become more and more identical.

Data assimilation tends to accelerate this col-
lapse. There are two main methods for counteract-
ing this collapse: (a) Prior inflation, take the covari-
ance between the ensemble members before the as-
similation (the prior) and multiply it by a constant.
(b) Add perturbation to another part of the system.
For example, we have increased the ensemble spread
by perturbing the OH in the OH CONC file. Future
experiments should investigate the perturbation of
the emissions and the meteorology data.

4.2 Cutoff

A second factor that greatly impacted the data
assimilation was the cutoff. The cutoff determines
the spatial distance around a particular observation
that should be considered for data assimilation. It
defines a smooth function that decreases the corre-
lation between an observation and the state vari-
able as the distance increases. In our assimilations,
the cutoff value determines the half-width of the
Gaspari-Cohn 5th order polynomial (Gaspari and
Cohn 1999).

In the horizontal, the cutoff may dramatically
change the assimilation results. We found that if the
cutoff was too large, then observations could impact
state variables that were spuriously correlated but
spatially remote. The resulting assimilation tended
to smooth out the expected spatial variability in
each ensemble member. If the cutoff was too small,
only state variables very near the observations would
be updated. The result was a “bullseye” pattern of
regions just around the observation having poten-
tially dramatic changes while the rest of the domain
was unchanged.

In the vertical, we experimented with multiple
schemes for limiting the impact of a surface obser-
vation on the state variables. Initially, we limited the
update to the first vertical level of the state variable.
Because of diffusion, the updated CO value quickly
returned to it’s original non-assimilated position, of-
ten within a model hour.

A second approach was to modify the DART
module to consider both the cutoff and the model
PBL height. If the state variable was within the
cutoff function distance and below the PBL height,
it would be potentially updated. If it was outside
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CO DART - fractional bias CMAQ full to IC ensemble mean (ppb) 
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Figure 2: Fractional bias between the mean of the
ensembles without data assimilation and the original
full CMAQ run

of the cutoff function or above the PBL, it would
not be updated. This improved our results, but cre-
ated unintended consequences. For reasonable cut-
offs, the PBL test would sometimes create a strong
vertical gradient. In these cases the posterior values
below PBL height would be significantly changed by
the update, while the values above the PBL height
would remain the same.

Our present solution is to disregard the PBL
height and allow all levels to be considered for up-
date within the cutoff function distance. This smoothes
the vertical gradient, while not discarding state vari-
ables that may be correlated despite being above the
PBL. The determination of the ideal horizontal and
vertical cutoff is an area for further research.

4.3 Synthetic Results

In the synthetic experiment, synthetic obser-
vations were drawn from the full CMAQ run and
assigned a σ of 2.5 ppbv. The observations were
choosen to match the physical monitor locations.
The ensembles were run from the perturbed IC. At
first, they were run without any data assimilation.
A second run used the EAKF filter to assimilate
the synthetic observations every three hours. The
mean of the ensembles were compared against the
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Figure 3: Fractional bias between the mean of the
ensembles after data assimilation and the original
full CMAQ run

full CMAQ run using fractional bias:

b =
COfull − COmean
[

COfull+COmean

2

] (3)

where b is the fractional bias, COfull is CO from
the full CMAQ run, and COmean is the mean of the
CCTM CO ensembles. In comparing Figure 2, no
data assimilation, to Figure 3, data assimilation, it
is clear that the EAKF filter drew the mean of the
ensembles closer to the “truth” (in this case the full
CMAQ run). The ensembles were adjusted to more
closely match the “truth” not only at the monitor
locations, but over large sections of the domain.

Future work will include experimenting with dif-
ferent perturbation schemes, cutoff lengths, and the
assimilation of MOPITT data.
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