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1. INTRODUCTION*

A recent study compared real-time air quality 
simulations performed with the ETA/CMAQ 
modeling system over New York State against 
observations and routine expert-based air quality 
forecasts for O3 and PM2.5 (Hogrefe et al., 2006). 
Results indicated that in most regions of New York 
State, the routine air quality forecasts based on 
previous day’s observed concentrations and 
expert judgment showed slightly better agreement 
with the observed distributions of Air Quality Index 
(AQI) categories than CMAQ simulations. 
However, CMAQ showed skill similar to these 
routine forecasts in terms of capturing the AQI 
tendency, i.e. in predicting changes in air quality 
conditions. Therefore, it was concluded that it 
might be beneficial to develop tools that combine 
CMAQ’s predictive capability in terms of temporal 
trends with real-time observations of ambient 
pollutant levels to generate improved forecasts.  

In this study, we present several potential 
approaches for implementing this concept. The 
utility of these approaches is evaluated by 
comparing the resulting forecast fields fields 
against observations and unadjusted CMAQ 
simulations. These analyses focus on daily 
maximum 8-hr ozone and 24-hr average PM2.5 
concentrations for the summer of 2005. 

2. DATABASE AND METHODS OF 
ANALYSIS 

2.1 Model Setup and Observational 
Database 

In this study, we utilize observations and 
archived CMAQ forecasts that were generated by 
the New York State Department of Environmental 
Conservation (NYSDEC) for June 1 – September 
30, 2005. The CMAQ air quality model is 

                                                      
* Corresponding author contact information: Christian 
Hogrefe, BAQAR, New York State Department of 
Environmental Conservation, 625 Broadway, Albany, 
NY 12233-3259, Phone (518) 402 8402, Fax (518) 402 
9035, Email chogrefe@dec.state.ny.us 

documented in Byun and Schere (2005).  The 
specific setup of the CMAQ air quality forecasting 
system employed by NYSDEC is described in 
Hogrefe et al. (2006) and is based upon the 
forecasting system developed by the National 
Weather Service (NWS), the National Oceantic 
and Atmospheric Administration (NOAA), and the 
Environmental Protection Agency (EPA) 
(Davidson et al., 2004; Otte et al., 2005). 

Observations of hourly ozone and total PM2.5 
concentrations for monitors in New York State 
were downloaded from the EPA AIRNOW system. 
Daily maximum 8-hr ozone concentrations and 24-
hr average PM2.5 concentrations were then 
determined from the hourly data and used in the 
subsequent analyses. It should be noted that the 
focus of the AIRNOW database is on providing 
access to monitoring information in near real-time. 
Therefore, while basic quality assurance is 
performed via automated checks on 
minimum/maximum values, rates of change, etc., 
these data are considered preliminary and are 
subject to more complete quality assurance prior 
to integration into the AQS database.  

2.3 Postprocessing Approaches 
In this study, we compare five methods to 

adjust CMAQ model simulations for improved air 
quality forecasts. In the equations below, the next-
day forecasts resulting from these five methods 
are denoted as F1 – F5.  
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where i represents today, i+1 represent tomorrow, 
and the overbar represents a temporal average. 
This can be viewed as a simple bias adjustment of 
the original CMAQ predictions. 
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where the vertical bar indicates that the average 
difference between observations and CMAQ 
predictions is computed for a number of model-
predicted concentration bins and the bias 
adjustment on any given day corresponds to the 
bin in which the original CMAQ forecast falls. 
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This represents a forecasting approach that 
utilizes the CMAQ-predicted change between 
today and tomorrow and adds this tendency to 
today’s observed value. 
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where σobs and σCMAQ represent the standard 
deviation of the observed and CMAQ simulated 
concentrations, respectively. This is similar to 
method 3, but adjusts the CMAQ-predicted 
changes to account for differences in the spread 
of observed and model-predicted distributions. 
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where s represents the slope of the least-squares 
linear regression fit between unadjusted CMAQ 
simulations and observations. This is an alternate 
approach to method 4 for utilizing CMAQ-
predicted changes adjusted for differences in the 
spread of observed and model-predicted 
distributions. 

It is important to point out that methods 1-2 

and 4-5 all rely on incorporating observations not 
just for the current day but for an extended time 
period. In a routine forecast setting, this extended 
time period could be the past week, month, or 
season. In this study, we utilized the fixed time 
period from June 1 – September 30 also used for 
evaluating these methods, i.e. for any given day, 
both past and future observations were included. 
While this choice would not be feasible in a routine 
forecast setting, it is still suitable for demonstrating 
the characteristics of these adjustment methods 
since no special emphasis is placed on the actual 
observed next-day values relative to all other 
values from the 4-month time period that are 
included in approaches 1-2 and 4-5. Future 
analysis might consider the impact of the choice of 
the “calibration” or “learning” period over which the 
adjustment parameters in methods 1-2 and 4-5 
are calculated on the performance of these 
approaches, but this is beyond the scope of the 
current study. 

 
 
Figure 1: Distributions of 24-hr average PM2.5 concentrations from observations, original CMAQ 
predictions, and adjustment methods 1 – 5. These distributions were constructed from all available 
data at the 21 PM2.5 monitors considered in this analysis. 



2.4 Evaluation Metrics 
To compare the ability of the five model 

adjustment methods to provide improved 
forecasts, we employ discrete as well as 
categorical performance measures (Kang et al., 
2005). The discrete forecast measures are the 
total, systematic, and unsystematic root mean 
square error (RMSE) as defined by Willmott 
(1982) and the categorical metrics are the False 
Alarm Ratio (FAR), Probability of Detection (POD), 
and Critical Success Index (CSI) as described by 
Kang et al. (2005). For the categorical metrics, we 
selected a threshold that corresponds to the 
transition from the “moderate” to the “unhealthy for 
sensitivty groups” range of the Air Quality Index 
(AQI). For ozone, this threshold corresponds to 84 
ppb, while for PM2.5, it corresponds to 40 µg/m3 
(U.S. EPA, 1999). 

 

3. RESULTS AND DISCUSSION 
As an illustration of the effect of adjustment 

methods, Figure 1 shows distributions of 24-hr 

average PM2.5 concentrations from observations, 
original CMAQ predictions, and adjustment 
methods 1 – 5. These distributions were 
constructed from all available data at the 21 
AIRNOW PM2.5 monitors considered in this 
analysis. It can be seen that the distribution from 
the original CMAQ predictions has a heavier tail 
than the one constructed from observations, 
consistent with the overprediction of PM2.5 at many 
monitors in New York State reported by Hogrefe et 
al. (2006). This figure illustrates that all adjustment 
methods show closer agreement with the 
observed distribution than the unadjusted CMAQ 
simulation. However, adjustment methods 1 and 
especially 2 now tend to underestimate high 
observed concentrations while methods 3 through 
5 lead to distributions that are close to the 
observed distributions for concentrations above 25 
µg/m3.  

While Figure 1 illustrates that the adjustment 
methods investigated generally lead to a closer 
agreement between observed and predicted 
distributions, this does not necessarily indicate 
that they improve the ability to capture the 

 
 
Figure 2: Total, systematic, and unsystematic RMSE of daily maximum 8-hr ozone concentrations 
predicted by the unadjusted CMAQ simulations and adjustment methods 1 – 5. Results were 
computed separately at each site, and the boxplots indicate the range of results across the 38 ozone 
monitors considered in this analysis. The center bar of each box represents the median, the lower 
and upper limits of the box represent the 25th and 75th percentiles, respectively, and the whiskers 
extend to the most extreme data point having a distance from the box that is no more than 1.5 times 
the height of the box. If the notches for different boxes do now overlap, it indicates that the medians 
associated with each box are significantly different at the 95% confidence level. 



temporal fluctuations present in the observations. 
As discussed in Section 2, we measure this ability 
through the RMSE (total, systematic, and 
unsystematic), and the categorical metrics FAR, 
POD, and CSI. Figure 2 shows RMSE results for 
daily maximum 8-hr ozone. The boxplots illustrate 
the range of the various metrics across the 32 
ozone monitors utilized here. It is evident that 
methods 1 and 2, which focus on reducing the 
overall model bias, reduce the median overall 
RMSE. This reduction is achieved primarily 
through a reduction of the systematic RMSE while 
the unsystematic RMSE remains largely 
unchanged. On the other hand, adjustment 
methods 3-5 that use today’s observations as 
starting point and adjust it with unscaled or scaled 
model-predicted changes show an even stronger 
reduction in the systematic RMSE, but also an 
increase in the unsystematic RMSE, leading to 
little changes in the overall RMSE. The significant 
reduction of the systematic RMSE for methods 3-5 
is expected since these methods aim at moving 
the best-fit line of model predictions vs. 
observations closer to a 1:1 line, the departure 
from which is measured by the systematic RMSE. 
A possible interpretation of the increase of the 

unsystematic RMSE might be that model predicted 
day-to-day changes, i.e. the first derivative of the 
CMAQ predicted time series, contain a higher 
level of random fluctuations than the original time 
series. These random fluctuations are then further 
amplified if the model-predicted changes are 
multiplied by the ratios of observed and predicted 
standard deviations. Results for PM2.5 are 
qualitatively similar to those shown in Figure 2 for 
ozone. 

Figure 3 shows categorical performance 
metrics for PM2.5 calculated for a threshold of 40 
µg/m3 for unadjusted and adjusted CMAQ 
predictions. The numbers shown in this Figure 
were calculated as average over all PM2.5 
monitors considered in this study. Methods 1 and 
2 reduce both the FAR and the POD, consistent 
with Figure 1 that showed a tightening of the 
distributions for these two methods. On the other 
hand, method 3 shows an increase in the FAR 
and a constant POD, while methods 4-5 shows an 
increase in both the FAR and the POD. The 
results for the CSI, which measures the overall 
ability of a prediction to capture exceedances 
while avoiding false alarms, indicate that methods 
1-4 all provide better performance in this category 

 
Figure 3: False Alarm Ratio (FAR), Probability of Detection (POD), and Critical Success Index (CSI) 
of daily average PM2.5 concentrations predicted by the unadjusted CMAQ simulations and adjustment 
methods 1 – 5. Results were computed separately at each site, and the bars represent the average 
results across the 21 PM2.5 monitors considered in this analysis. 



compared to the unadjusted CMAQ results. The 
results for ozone (not shown here) indicate that 
methods 2 and 3 perform best for this metric. This 
is driven by only a slight increase in the FAR but a 
larger increase in the POD when method 3 is used 
to adjust CMAQ predictions. 

While the results shown in figure 3 were 
averaged over all stations, we also determined the 
best adjustment method separately for each metric 
(lowest total RMSE or highest CSI) and pollutant 
(ozone and PM2.5) at each site. Figure 4 shows the 
percentage of sites at which a given adjustment 
method performed best for a given metric and 
pollutant. If there was a tie for the best 
performance between different metrics at a given 
station, they were all included in the count for that 
station and weighted accordingly. This figure 
clearly illustrates that method 2, the binned bias 
correction, is the best approach to lower the 
overall RMSE at most monitors for both O3 and 
PM2.5. However, the results are more varied when 
one considers the CSI. For both ozone and PM2.5, 
there is a small number of stations at which the 
original CMAQ predictions yield a higher CSI than 
any of the adjustment methods explored in this 

study. At about half of the remaining stations 
where one of the postprocessing approaches 
yields a higher CSI than the unadjusted CMAQ 
results, method 3 is the method of choice for 
ozone, followed by methods 5, 4, 1, and 2. For 
PM2.5, however, methods 2 – 4 appear to improve 
the forecasts at a roughly similar fraction of sites. 
If one draws a broad distinction between methods 
1-2 (the “bias-correction” approaches) and 
methods  3-5 (the “CMAQ tendency” approaches), 
the latter appear to be superior to the former in the 
case of ozone at most sites, but this finding does 
not necessarily hold true for PM2.5. 

4. SUMMARY 
This paper described the comparison of five 

approaches aimed at providing improved air 
quality forecasts based on both observations and 
CMAQ simulations. While the “bias-correction” 
approaches 1 or 2 work best for reducing the total 
RMSE at most sites, the approaches that combine 
today’s observations with unadjusted or adjusted 
CMAQ-predicted temporal changes often work 
best for improving the CSI, especially for ozone. 
Moreover, it appears that the best adjustment 
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Figure 4: Percentage of sites at which a given adjustment method performed best for a given metric 
and pollutant. Grouped from left to right, the metrics and pollutants considered are: total RMSE for 
daily maximum 8-hr ozone; CSI for daily maximum 8-hr ozone using a threshold of 84 ppb; total 
RMSE for daily average PM2.5; and CSI for daily average PM2.5 using a threshold of 40 µg/m3.



method to improve the CSI, which measures the 
quality of categorical forecasts, needs to be 
chosen on a pollutant-by-pollutant and station-by-
station basis. It should be noted that the list of 
approaches investigated here is by no means 
complete. For example, Delle Monache et al. 
(2006) and Kang et al. (2006) describe the 
application of a Kalman filter bias correction to 
generate improved air quality forecasts and report 
good success. Additional methods might aim at 
including spatial correlation structures into the 
model adjustment algorithm rather than relying 
solely on temporal structures at individual 
monitors. Such analyses will be performed in the 
future. 
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