

IMPROVEMENTS TO THE PYTHON-BASED PERFORMANCE ANALYSIS SUPPORT

SYSTEM (PyPASS): NEW TOOLS TO SUPPORT AIR QUALITY MODEL EVALUATIONS

Leiran Biton, Byeong-Uk Kim, William Vizuete* and Harvey E. Jeffries
Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, NC, USA

New 8-hour regulations and guidelines for

ozone from the Environmental Protection Agency
pose challenges to model performance evaluators.
This paper introduces improvements to the
Python-based Performance Analysis Support
System (PyPASS), which can assist in the
evaluation process.

1. INTRODUCTION

The Python-based Performance Analysis
Support System (PyPASS) was recently developed
at The University of North Carolina at Chapel Hill
as a modeling diagnostic tool to assist in the
implementation of the Protocol for Regulatory
Ozone Modeling Performance Tests (PROMPT).
In contrast to traditional statistical measures of
model performance, PROMPT provides regulatory
modelers the framework to achieve a more holistic
and systematic approach to assess model
reliability. At the inception of PROMPT, however,
model diagnostic tools did not possess the
sophistication needed to implement its guidelines.
This need led to the creation of the PyPASS
diagnostic tool, which has significant
computational and interfacial advantages over
traditional support tools, such as Package for
Analysis and Visualization for Environmental
(PAVE) Data.

Since its introduction last year, notable
improvements have been incorporated into the
PyPASS system. These changes enhance the
flexibility of PyPASS to evaluate a myriad of
modeling episodes and to accommodate broader
user specifications. Specific modifications include:
expanded mathematical manipulation of species
concentrations, aircraft VOC visualization, 8-hour
ozone metrics, expanded monitoring data
visualizations (including design value tracking) and
gathering capabilities, improved labeling schemes,
integration with Python 2.4, and porting to Mac OS
X platforms. New PyPASS functionalities allow for

*Corresponding author: William Vizuete, Department of
Environmental Sciences and Engineering, UNC-Chapel
Hill, 113 Rosenau Hall, CB#7431, Chapel Hill, NC
27599-7431; e-mail: vizuete@unc.edu

more detailed, precise, and scientific model
evaluations. These improvements in conjunction
with the guidance provided by PROMPT, enables
a more comprehensive model performance
evaluation for photochemical air quality models.

2. PyPASS OVERVIEW

PyPASS was developed to aid in the analysis
and evaluation of model simulations, as required
by the Clean Air Act Amendments of 1990
(CAAA). The system was designed to meet the
following design constraints: it must (1) generate
information rapidly; (2) provide information not
readily available through the use of existing tools,
such as PAVE; (3) be publicly available and cheap
or free to use; and (4) be flexible and extensible to
accommodate future changes to data formats and
analytical needs.

To accomplish these goals, the system was
implemented to: (1) take advantage of command-
line batch operations, which optimize efficiency for
large-scale data processing and information
generation; (2) create pre-defined graphics as
defined by the user; (3) rely on Python (Python
Software Foundation 2006), a free-source script-
based object-oriented programming language, with
supporting scientific computing and visualization
libraries.

Since its unveiling (Kim and Jeffries 2005),
PyPASS has undergone significant improvement
and refactoring. Most changes have reflected
specific needs for analysis or library updates, but
the system has also undergone streamlining and
optimization.

2.1 Library and Platform Upgrades

 To take advantage of several supporting
library upgrades, and an upgrade for Python itself,
we have performed significant refactoring of code
within PyPASS. Additionally, PyPASS has been
ported to Mac OS X. [Though it has not been
tested on other systems to date, PyPASS should in
theory operate without problems on other UNIX-
based systems.] See Table 1 for the current list of
supporting libraries and platforms. Table 1 also

includes applications that are supported by the
current PyPASS system.

Table 1: Applications and libraries required for
PyPASS.

Application/Library (Version), Source
CAMxSubset/CMAQExtract (8.0),
http://ftpozone.sph.unc.edu
Python (2.4.3), http://www.python.org/
ChartDirector (4.0), http://www.advsofteng.com/
NetCDF (3.6.1),
http://www.unidata.ucar.edu/software/netcdf/
gdal (1.3.2), http://www.gdal.org/index.html
HDF5 (1.6.5), http://hdf.ncsa.uiuc.edu/HDF5/
mxDateTime (2.0.6), http://www.egenix.com/files/
python/mxDateTime.html
numarray (1.5.1), http://www.stsci.edu/resources/
software_hardware/numarray
PROJ.4 (4.4.9), http://proj.maptools.org/
pyparsing (1.4.3), http://pyparsing.wikispaces.com/
PyRXP (1.09), http://www.reportlab.org/
PyTables (1.3.2), http://pytables.sourceforge.net/
ReportLab (2.0), http://www.reportlab.org/

The biggest functional changes to PyPASS

have been the port to Mac OS X, as new run-
scripts have been developed for the UNIX
environment, and the upgrade to Python 2.4, as
the code has been updated to exclude deprecated
functions.

2.2 Upgraded Capabilities

The newly expanded visualization scheme
available in PyPASS includes mathematical
manipulation, as is typically used for model
intercomparison in PAVE. We have also enabled
functions appropriate for use in model episode
selection, such as observation-only plotting and
design value tracking. In addition, volatile organic
compound (VOC) speciation schemes can be fed
to a new subroutine to compare monitored versus
model predicted VOC concentrations. These new
utilities offer opportunities to evaluate the episode
itself, not just the model. Formaldehyde has been
integrated into the existing aircraft plots, and there
are plans to make these plots even more
extensible. The expanded mathematical capability

Figure 1: PyPASS Flow-Chart. The Model Evaluator (center) represents human input and decision making,
closed rectangles represent user-initiated processes, pink shapes represent PyPASS generated plots, green
shapes represent documents, and blue shapes represent data inputs (rhombus) and outputs.

proves most useful in use with tile plots. For
example, model sensitivity run output can be
differenced to show concentration variation
resulting from changes to inputs. Sample charts
will be shown in the Illustrative Examples section,
below.

2.3 Model Evaluation with PyPASS

The PyPASS tool is designed to assist in
model evaluations, as detailed in the PROMPT
meta-protocol (Kim and Jeffries). PROMPT
requires detailed analysis using a holistic site-by-
site, day-by-day approach offered by PyPASS.
Used in conjunction with other analytical tools,
such as process analysis, PyPASS can help
models perform systematic model evaluation, as
suggested by the EPA 8-hour modeling guidelines
(EPA 2005).

2.4 Future Expansion

Planned development for PyPASS includes
emission visualization tools, such as those already
available in PAVE, and comprehensive tile plots
(with statistical analysis).

3. ILLUSTRATIVE EXAMPLES

For the analysis of modeling episodes
spanning tens of days, PyPASS can generate
hundreds of plots relatively quickly (depending on
processor speed). This section highlights
components of a hypothetical model evaluation.
Operating PyPASS, in essence, follows the
framework detailed in Figure 1. Users prepare
data, customize input and output, and assemble
plots and associated data into automatically

generated reports.

3.1 Data Preparation

New functionality in PyPASS enabled the
conversion of explicit automatic gas-
chromatograph (autoGC) observed to model
output Carbon Bond IV (CBIV) species according
to William Carter s speciation profile database
(2006) Modeled CBIV concentrations are plotted
against speciated monitoring site information in
existing time series and scatter plots (Figure 2).

3.2 Data Visualization

After additional data is prepared, further data
visualization can be performed. The difference in
ambient concentrations between two simulations
can be plotted on tile plots. Figure 3 shows two tile
plots of ozone concentrations from different
simulations (compared to observations marked by
diamonds), and the difference below them.

Figure 3: Differenced tile plots in sensitivity simulations
for ozone. Smalll plots are original (left) and sensitivity
(right) simulation concentrations for ozone, while large
plot is the difference of concentrations from these
simulations.

Figure 2: Model time-series comparison with
observations for ethylene. Two simulations (dashed
and dotted lines) are vastly overpredict from what is
monitored (discrete points).

Aircraft plots have been extremely valuable to

model evaluators, and PyPASS now supports
graphical display of formaldehyde (or any other
non-hourly sampled species) in aircraft plots. The
plot in Figure 4 shows moderate model agreement
with ozone and formaldehyde (with some
significant underprediction), but model
concentrations of carbon monoxide of twice that
observed .

Furthermore, new eight-hour regulations for
ozone require new visualization techniques, as
implemented in PyPASS. These new
visualizations, which incorporate components of
traditional one-hour evaluations, assist evaluators
in determining exceedance levels and average
model performance over the photochemical day.
Figure 5 illustrates one such use of the 8-hour
metrics, in simply determining which monitors are
out of attainment.

Another feature of the 8-hour regulations is the
design-value for monitors. PyPASS integrates an
innovative visualization which quantifies not only
the 8-hour average input values that go into the
design value for a year, but also the peak 1-hour
average value during that span and the resultant 8
hour wind vector during that period. As shown in
Figure 6, this information provides a fuller picture
for evaluators than simply looking at the average
value.

Figure 4: Aircraft plot including formaldehyde data.

4. DISCUSSION

Model evaluators face significant challenges,
especially with the dissemination of 8-hour ozone
modeling guidelines. PyPASS is a tool that can
help in the model performance evaluation process,
and while it is flexible enough to have utility across
a variety of modeling scenarios, the outputs are

designed carefully to maximize information
provided in plots.

Figure 5: Observation-only peak-bar plot for eight-hour
averaged ozone.

Figure 6: Design value plot for 5-year period. 8-hour
wind vectors are represented by arrows stemming from
circles, which represent the component 8-hour average
value. 1-hour peak values are crosses and correspond
with 8-hour average.

5. REFERENCES

Advanced Software Engineering Limited, 2006:
ChartDirector Version 4.0,
http://www.advsofteng.com/

CAMxSubset/CMAQExtract 8.0,
http://ftpozone.sph.unc.edu

Carter, W.P.L., 2006: Development of an Improved
Chemical Speciation Database for Processing
Emissions of Volatile Organic Compounds for
Air Quality Models,
http://pah.cert.ucr.edu/~carter/emitdb/

Cartographic Projections Library, 2006: PROJ.4
Version 4.4.9, http://proj.maptools.org/

eGenix, 2006: eGenix mx.DateTime Version 2.0.6
http://www.egenix.com/files/python/

EPA 8-hour modeling guidelines, 40 CFR 81.
Geospatial Data Abstraction Library, 2006: GDAL

Version 1.3.2, http://www.gdal.org/index.html
Hierarchical Data Format 5, 2006: HDF5 Version

1.6.5, http://hdf.ncsa.uiuc.edu/HDF5/
Kim, B.-U. and H.E. Jeffries, 2005: Python-based

Performance Analysis Supporting System
(PyPASS): A software tool set for the
performance analysis of regulatory
photochemical air quality modeling, Extended
Abstracts, 4th Annual CMAS Models-3 Users'
Conference, Chapel Hill, NC, CMAS Center.

Network Common Data Format, 2006: NetCDF
Version 3.6.1,
http://www.unidata.ucar.edu/software/netcdf/

Python Software Foundation, 2006, Python
Version 2.4, http://www.python.org/

PyRXP (1.09), http://www.reportlab.org/
pyparsing Version, 1.4.3,

http://pyparsing.wikispaces.com/
PyTables (1.3.2), http://pytables.sourceforge.net/
ReportLab (2.0), http://www.reportlab.org/
Space Telescope Science Institute, 2006:

numarray Version 1.5.1,
http://www.stsci.edu/resources/software_hard
ware/numarray

