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1. INTRODUCTION 
     The United States Environmental 
Protection Agency (EPA) has classified 
many counties in the eastern United 
States as non-attainment for the 
annual PM2.5 National Ambient Air 
Quality Standard (NAAQS). 
Additionally, EPA passed the Regional 
Haze rule to improve visibility in Class 
I areas by 2060. Visibility degradation 
results from elevated ambient 
concentrations of PM2.5. Two of the 
largest chemical components of PM2.5 
in the eastern United States include 
secondarily formed ammonium sulfate 
and ammonium nitrate. States with 
PM2.5 non-attainment counties or with 
sources contributing to visibility 
impairment at Class I areas must 
submit an emissions control strategy 
in a State Implementation Plan (SIP) 
to the EPA. The SIPs will focus on 
reducing emissions of sulfur dioxides 
(SOX) and nitrogen oxides (NOX), 
which form PM2.5 sulfate and nitrate 
through physical processes and 
important chemical reactions including 
ammonia neutralization. 
     Emission control strategies are 
modeled with 3-dimensional Eulerian 
photochemical transport models. A 
comprehensive performance 
evaluation of the PM2.5 species and 
their pre-cursors is necessary to 
determine if the model will 
appropriately predict PM2.5 after 
adjustments to primary emissions 
species. This type of evaluation has 
been impossible due to the lack of 
long-term co-located measurements of 
PM2.5 sulfate, nitrate, and ammonium 
ions and key pre-cursor species 
including sulfur dioxide (SO2), nitric 
acid (HNO3), and ammonia (NH3). 

     A monitor network was established 
in late 2003 and operated through 
2004 using predominantly rural 
locations (9 rural and 1 urban) in the 
central and eastern United States 
(Figure 1).  
 

 
Figure 1. Ammonia network monitor 
locations 
 
This network simultaneously measures 
PM2.5 sulfate ion, nitrate ion, 
ammonium ion, and chemical pre-
cursor species sulfur dioxide, nitric 
acid, and ammonia. These samples 
were taken on a once in 6 day interval 
and have a 24-hr averaging time. This 
monitor network provides a unique 
opportunity to assess how well the 
modeling system predicts the spatial 
and temporal variability of important 
pre-cursor species and PM2.5 sulfate, 
nitrate, ammonium ions. Model and 
observation estimates of the degree of 
sulfate neutralization (DON) and the 
excess ammonia indicator term 
provide additional information about 
how well the model and observations 
agree in terms of PM2.5 nitrate and 
sulfate formation regimes. The excess 
ammonia term is an indicator about 
whether PM2.5 nitrate ion formation is 
limited by the availability of ammonia 
or nitric acid. The degree of sulfate 
neutralization (DON) gives an 



indication about whether PM2.5 sulfate 
ion is fully or partially neutralized with 
ammonium. 
 
 
2. METHODS 
    The Comprehensive Air Quality 
Model with Extensions (CAMx) version 
4.30 is a 3-dimenstional Eulerian 
photochemical transport model that 
uses state of the science routines to 
model particulate matter formation 
and removal processes over a large 
modeling domain (Nobel et al. 2002; 
Chen et al. 2003; Morris, Mansell, Tai, 
2004). The model is applied with 
ISORROPIA inorganic chemistry, SOAP 
organic chemistry, regional acid 
deposition model (RADM) aqueous 
phase chemistry, and an updated 
carbon-bond IV (CB4) gas phase 
chemistry module (ENVIRON, 2005; 
Nenes et al, 1998; Carter, 1996). 
Inputs to CAMx include initial and 
boundary concentrations, 
meteorological variables, pollutant 
emissions, and landuse information. 
     Boundary conditions represent 
pollution inflow into the model from 
the lateral edges of the grid and initial 
conditions provide an estimation of 
pollution that already exists. The 
annual model simulation has two 
weeks of spin-up to minimize initial 
condition influence. The initial and 
boundary conditions are based on 
monthly averaged species output from 
an annual (calendar year 2002) 
application of the GEOS-CHEM global 
chemical transport model (Jacob et al, 
2005; Bey et al, 2001). 
     Emissions data is processed using 
the EMS-2003 emissions model 
(Wilkinson et al, 1994). Anthropogenic 
emission estimates are made for a 
weekday, Saturday, and Sunday for 
each month. The biogenic emissions 
are day-specific. Volatile organic 
compounds are speciated to the CB4 
chemical speciation profile (Carter, 
1996). Ammonia emissions are based 
on the Carnegie Mellon University 
ammonia model (July 2004 version) 

using 2002 census of agriculture data 
(Strader et al. 2005; Pinder et al., 
2004; Goebes et al., 2003). 
     Meteorological input data for the 
photochemical modeling runs are 
processed using the National Center 
for Atmospheric Research (NCAR) 5th 
generation Mesoscale Model (MM5) 
version 3.6.1 (Dudhia, 1993; Grell et 
al, 1994). Important meteorological 
model parameterizations and physics 
options include mixed phase 
(Reisner1) microphysics, Kain-Fritsch 
2 cumulus scheme, Rapid Radiative 
Transfer Model, Pleim-Chang planetary 
boundary layer (PBL), and the Pleim-
Xiu land surface module. These 
parameters and options are selected 
as an optimal configuration for the 
central United States based on 
multiple MM5 simulations using a 
variety of physics and configuration 
options (Johnson, 2003). 
     All models are applied with a 
Lambert projection centered at (-97, 
40) and true latitudes at 33 and 45. 
The photochemical modeling domain 
consists of 97 cells in the X direction 
and 90 cells in the Y direction covering 
the central and eastern United States 
with square 36 km grid cells (Figure 
2). CAMx4 is applied with the vertical 
atmosphere resolved with 16 layers up 
to approximately 15 km above ground 
level. 
 

 
Figure 2. CAMx4 36 km modeling 
domain (dark yellow box) and MM5 36 
km domain (light yellow box). 
 
Performance metrics used to describe 
model performance include mean bias, 



gross error, fractional bias, and 
fractional error (Table 1) (Boylan et al, 
2006). Performance metrics include all 
non-negative data points unless data 
censoring is specifically notated. The 
bias and error metrics are used to 
describe performance in terms of the 
measured concentration units (μg/m3) 
and the fractional metrics describe 
performance as a percent. 
 
Table 1. Model Performance Metrics 

Mean Bias      
 

 

Gross Error 

 

Mean 
Fractional Bias 

 

Fractional 
Gross Error 

 

*P=model prediction; O=observation; 
N=number of days; M=number of 
monitors 
 
The best possible model performance 
is when the bias and error metrics 
approach 0. The fractional metrics are 
bounded by 200%, which is considered 
very poor performance. 
     An indicator of whether PM2.5 
nitrate ion formation is limited by the 
availability of nitric acid or ammonia is 
the excess ammonia term (Blanchard 
et al, 2000). All the terms in the 
equation below are expressed in units 
of μmole/m3.  
 

Excess Ammonia = NH3 + NH4
+ – 

2*SO4
= – NO3 – HNO3 

 
When the excess ammonia term is less 
than 0 then PM2.5 nitrate formation 
would be ammonia limited and when 
the term is greater than 0 then PM2.5 
nitrate formation is nitric acid limited. 
The degree of sulfate neutralization 
(DON) is estimated to determine 
whether sulfate is completely acidic, 
fully neutralized by ammonia, or in 
between.  
 

96/]4[
62/]3[18/]4[

SO
NONHDON −

=  

 
There are 2 moles of ammonium for 
every mole of sulfate when sulfate is 
fully neutralized in the form of 
ammonium sulfate, giving a DON value 
of 2. If DON is 1, then sulfate would be 
ammonium bisulfate and particulate 
sulfuric acid when DON is 0. 
 
3. RESULTS and DISCUSSION 
     An examination of the mean bias 
for all monitor locations and entire 
modeling period show a regional over-
prediction of total sulfate (SO2+SO4

=), 
but good relationship between 
prediction-observation pairs (mean 
bias=5.05 µg/m3 and r2= .54). This 
over-prediction is dominated by sulfur 
dioxide (mean bias=4.00 µg/m3). The 
large bias for only sulfur dioxide 
suggests PM2.5 sulfate formation in 
the model is not always limited by 
sulfur dioxide availability in the 
eastern and central United States. 
Total nitrate (HNO3+NO3

-) is slightly 
over-predicted by the model (mean 
bias=1.22 µg/m3 and r2= .28). NHX 
(NH3+NH4

+) has little overall bias 
(mean bias=0.13 µg/m3 and r2= .13). 
     Since the modeling system will be 
used to support regulatory applications 
to reduce PM2.5 ammonium sulfate 
and ammonium nitrate, performance is 
examined when these species are 
highest. Model performance for PM2.5 
sulfate ion is best in the summer 
(fractional bias=36%, r2=.57) when 
ambient concentrations are highest. 
PM2.5 nitrate ion performance has a 
fractional bias of -19% and 41% in the 
winter and fall seasons respectively. 
The prediction-observation pairs are 
well correlated for winter (r2=.49) and 
fall (r2=.39) seasons. PM2.5 
ammonium performance is best during 
the winter and summer months when 
concentrations tend to be highest with 
a fractional bias of 0% and 79% for 
winter and summer. 
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     Scatter-plots in Figure 3 show the 
prediction-observation relationship for 
each of the species.  
 

  

  

  
Figure 3. Observations and Model 
Predictions of NH3, NH4

+, HNO3, NO3
-, 

SO2, and SO4
= (μg/m3) 

 
A visual examination of the scatter-
plots shows the photochemical model 
does well at predicting concentrations 
of PM2.5 species even though the pre-
cursor species are not as consistently 
well predicted.  
     The mean bias metric estimated by 
station over all days is shown in Figure 
4. The mean bias for each species is 
fairly similar from site to site 
suggesting systematic biases in the 
modeling process rather than specific 
local emission inventory deficiencies. 
The MN2 site is the only site to over-
predict ammonia concentrations. MN2 
is also unique in that the bias for 
PM2.5 sulfate ion is higher than the 
bias for sulfur dioxide. At the other 
monitor locations the model over-
prediction bias for sulfur dioxide is 
much higher than the bias for PM2.5 
sulfate ion. 
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Figure 4. Bias metric by Site  
 
     The mean bias metric averaged 
over all sites by season is shown in 
Figure 5. Ammonia is under-predicted 
in the winter and spring months and 
has little bias in the summer and fall. 
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Figure 5. Bias metric by season 
 
PM2.5 nitrate ion is over-predicted in 
the fall and slightly under-predicted in 
the winter months. Sulfur dioxide and 
PM2.5 ammonium ion have their 
largest over-prediction bias in the fall 
months. PM2.5 nitrate under-
prediction in the winter months is 
partly symptomatic of PM2.5 sulfate 
over-predictions. The PM2.5 sulfate ion 
is keeping ammonia sequestered that 
would otherwise be free to react with 
nitric acid and form PM2.5 ammonium 
nitrate. 
     Measurements of sulfur dioxide and 
nitric acid at the ammonia monitor 
network may be under-estimated. 
Monthly averaged nitric acid and sulfur 
dioxide concentrations at 24 Midwest 
CASTNET monitors, 9 ammonia 
network monitors, and model 



predictions at the ammonia network 
locations are compared in Figure 6. 
 

 
Figure 6. Monthly concentrations of 
SO2 (top) and HNO3 (bottom) 
 
The modeling system appears to over-
predict SO2, particularly in the late 
summer and early fall months. It also 
shows that SO2 tends to be under-
estimated at ammonia network 
monitors and performance compared 
to these observations might make SO2 
performance to appear unrealistically 
degraded. The ammonia network 
monitors also appear to under-
measure nitric acid. Model estimates of 
nitric acid fall in line with the observed 
values in the colder months and are 
higher during the warmer months.  
     Excess ammonia is an indicator 
term used to describe PM2.5 nitrate 
formation in terms of ammonia or 
nitric acid limitation. Excess ammonia 
predicted by the modeling system is 
compared to the same term estimated 
with observed data (Figure 7). 
 

 
Figure 7. Excess Ammonia Indicator 
Term  
 
PM2.5 nitrate formation is limited by 
nitric acid availability when the excess 
ammonia term is greater than 0 and 
limited by ammonia when the term is 
less than 0. The modeling system 
tends to be nitric acid limited more 
often than seen in observations. This 
result is not entirely un-expected since 
the modeling system slightly under-
predicts ammonia and nitric acid is 
under-measured. In general, the 
modeling system and ambient 
observations tend to agree on whether 
PM2.5 nitrate formation is nitric acid or 
ammonia limited. This improves 
confidence that the modeling system 
estimates of PM2.5 nitrate ion will 
respond appropriately to changes in 
emissions pre-cursors.  
     The modeling system performance 
in predicting the degree of sulfate 
neutralization by ammonia is shown in 
Figure 8. 
 

 
Figure 8. Degree of sulfate 
neutralization by ammonia 
 
PM2.5 sulfate is almost always 
completely neutralized by ammonia in 
the modeling system. Observations 
suggest PM2.5 sulfate tends to be 
partially neutralized by ammonia, not 
usually fully neutralized to ammonium 
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sulfate. This suggests there should be 
more free ammonia gas in the 
photochemical model and less PM2.5 
sulfate and PM2.5 ammonium. This 
type of scenario would potentially 
improve model performance to some 
degree for all 3 of these species. 
     Model performance metrics are 
useful to quantitatively assess the skill 
of the model in predicting 
observations. It is unrealistic to expect 
the modeling system to predict 
observations with any more precision 
than which they can be measured.  
Observation collection methods are not 
perfect and an estimate of 
measurement uncertainty provides a 
useful benchmark for comparison to 
model performance metrics. 
Observation error is estimated by 
comparing measurements taken at the 
ammonia network sites with 
measurements taken from co-located 
networks that include IMPROVE and 
STN. 
     Table 3 shows the relationship 
between the model predictions and 
observations and co-located 
observations. The co-located 
observation relationship provides an 
upper-bound benchmark for model 
performance that is much more 
realistic than the mathematical perfect 
relationship of 1.  
 
Table 3. Model-Observation and Co-
located observation r2 values 

Species N RSQ N RSQ
NO3 487 0.44 463 0.77
SO4 536 0.49 510 0.71
NH4 477 0.35 103 0.72
SO2 558 0.52 42 0.86

Model-Obs Obs-Obs

 
 
Model estimates are well associated 
with observations. The weakest 
relationship between model estimates 
and observations is for NH4

+. The 
variability between co-located 
observations suggests model-
observation relationships approaching 
0.7 to 0.8 reflect excellent model 
performance. This also suggests an r2 

of 1.0 would be impossible to achieve 
given the inherent variability between 
co-located observations. Error and 
fractional error model performance 
metrics are compared to the same 
metrics used to describe co-located 
observations in Table 4. 
 
Table 4. Model-Observation and co-
located observation error and 
fractional error metrics 
Metric Species Model-Obs1 Model-Obs2 Obs-Obs
Error NO3 1.2 1.0 0.5
Error SO2 4.5 3.4
Error SO4 1.5 1.2 0.8
Error NH4 0.9 0.4
Frac Error NO3 85.9 84.7 45.1
Frac Error SO2 96.6 39.0
Frac Error SO4 52.1 39.4 33.4
Frac Error NH4 66.8 42.5
1 model v. ammonia network
2 model v. IMPROVE network  
 
The error and fractional error between 
the model estimates of PM2.5 nitrate 
and sulfate ions and IMPROVE network 
observations are also shown in Table 
4. The model performance error is 
lower when comparing model 
estimates of PM2.5 sulfate and nitrate 
ions to IMPROVE observations. The 
error and fractional error for PM2.5 
sulfate ion for model estimates 
compared to IMPROVE observations 
are very close to the error between the 
ammonia and co-located IMPROVE 
network observations. The error 
metrics for SO2 are higher than for 
SO4

=, NO3
-, or NH4

+. However, the 
error estimated between co-located 
samples of SO2 is also higher 
compared to SO4

=, NO3
-, and NH4

+. A 
evaluation of model performance 
comparing SO2 error to the error for 
other species might lead to a 
conclusion that performance for SO2 is 
poor relative to these species, but 
relative to the error in co-located SO2 
measurements it is estimated as well 
as NO3

-, SO4
=, and NH4

+.  
 
4. CONCLUSION 
Model performance is quite good for 
PM2.5 sulfate ion, PM2.5 nitrate ion, 
and PM2.5 ammonium ion. 
Performance for pre-cursor species 
sulfur dioxide, nitric acid, and 



ammonia is good but not as strong as 
the performance for the PM2.5 
species. The pre-cursor species 
performance is better than quantified 
against the ammonia monitor network 
observations for sulfur dioxide and 
nitric acid as these species seem to be 
under-measured by the network. 
Sulfur dioxide is systematically over-
predicted by the modeling system. SO2 
emissions are dominated by large 
electrical generating units and the 
emissions estimates are very good, 
which suggests deposition removal 
mechanisms are not efficiently 
removing SO2 in the model. Ammonia 
tends to be under-predicted by the 
modeling system, especially during the 
winter and early spring months.  
     PM2.5 nitrate formation is usually 
limited by the availability of nitric acid 
at these monitor locations based on 
the observation data. The model 
estimates of the excess ammonia 
indicator tend to agree with the 
observed estimate and improves 
confidence that model PM2.5 nitrate 
will respond appropriately to changes 
in pre-cursor emissions. Regulatory 
strategies will likely focus on 
reductions in NOX rather than 
ammonia to control PM2.5 ammonium 
nitrate so the modeling system 
matches up well to the intended 
application purpose. 
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