Regional Photochemical Modeling for the Kansas City Clean Air Action Plan: What it Tells Us About the Challenges Ahead for 8-Hr Ozone Nonattainment Areas

> Prepared by: Neil Wheeler, Lyle Chinkin, and Steve Reid Sonoma Technology, Inc. Petaluma, CA

Presented to: 4th Annual CMAS Models-3 User's Conference Chapel Hill, NC September 26-28, 2005

Coauthors

Tom Gross, Andy Hawkins, and Doug Watson Kansas Department of Health and Environment Topeka, KS

Wendy Vit and Refaat Mefrakis Missouri Department of Natural Resources Jefferson City, MO

James Joerke Mid-America Regional Council Kansas City, MO

Overview

- Introduction
- Modeling approach
- Model performance
- Future-year simulations
- Discussion
- Summary and conclusions

Introduction

- Kansas City (KC) 8-hr ozone in 2003
- MARC Air Quality Forum and Air Quality
 Working Group
- Clean Air Action Plan (CAAP)
- Earlier modeling efforts: three episodes
- KDHE modeling: August 15-21, 1998

Modeling Approach (1 of 2)

- Pennsylvania State University/NCAR Mesoscale Model (MM5) with four-dimensional data assimilations
- 1996 National Emission Trends inventory projected to 1998
 - Updates for KS and MO stationary sources
 - Onroad mobile sources: MOBILE6
 - Link-based vehicle miles traveled (VMT) for KC and St. Louis
 - Offroad mobile sources: NONROAD
 - Biogenic sources: BEIS3
- Sparse Matrix Operator Kernel Emissions (SMOKE) processing system Version 2

Modeling Approach (2 of 2)

- CAMx Version 3.10
 - Chemistry: Carbon Bond IV (Mechanism 3)
 - Initial conditions: OTAG "clean"
 - Top boundary conditions: OTAG "clean"
 - Lateral boundary conditions: 51 ppb ozone for outer domain
 - Advection: Piece-wise parabolic method
 - Minimum K_v : 0.1 1.0 with the "kvpatch" program

Modeling Domains

Monitoring Sites

Model Performance (1 of 3)

Model Performance (2 of 3)

Model Performance (3 of 3)

Future-Year Simulations (1 of 2)

- Year 2010
- Area sources
 - 1999 National Emission Inventory (NEI) using growth factors from EPA's Economic Growth Analysis System (EGAS).
 - For some source categories, such as locomotives and commercial marine vessels, alternative growth factors were chosen in keeping with federal regulatory support documents.
 - Controls for existing federal control measures.
- Onroad mobile sources MOBILE6 with EGAS projected VMT
- Offroad mobile sources NONROAD

Future-Year Simulations (2 of 2)

- Stationary sources
 - Electric Generating Units (EGU)
 - Integrated planning model from the Clear Skies Initiative
 - Surveys for KS and MO
 - Non-EGU sources EGAS growth factors
- Across-the-board emission reductions
- Specific emission control scenarios

2010 KC Area Emissions

Source Type	2010 Er (tons	2010 Emissions (tons/day)	
	VOC	NO _x	
Area Sources	111	29	
Nonroad Mobile Sources	32	78	
Onroad Mobile Sources	52	72	
Point Sources	32	226	
Total	227	404	

KC Area Peak 8-hr Ozone Isopleth Diagram for August 21, 2010

KC Area Peak 8-hr Ozone Isopleth Diagram for August 19, 2010

Emission Control Scenarios Modeled

Control Scenario		Emission Reduction (tons/day)		Largest decrease in peak 8-hr
#	Description	VOC	NO _x	ozone (ppb)
C01	All voluntary measures (conservative)	0.6	0.9	0.07
C02	All voluntary measures (aggressive)	-0.5	73.6	1.50
C03	All regulatory and voluntary measures; aggressive voluntary; maximum expected reductions	5.0	79.1	1.98
C04	All regulatory measures	5.7	5.7	0.48
C05	Voluntary measures (aggressive) without power plant reductions	1.5	2.6	0.63

Discussion (1 of 2)

- Limitations
- Eliminating all emissions in the KC area only reduced the peak 8-hr ozone concentrations by 18 to 30%.
- Approximately 24% of the peak 8-hr ozone concentrations in 2010 will be attributable to local emissions while global background and regional transport will contribute 41% and 35%, respectively.
- Federal and state emissions controls between 1998 and 2010 will reduce peak 8-hr ozone concentrations in the KC area by 9.4%.
- Moderate additional local emission controls will only reduce peak 8-hr ozone concentrations by, at most, another 2%.

Discussion (2 of 2)

- The greatest reductions in ozone concentrations are predicted to occur in areas that do not typically measure the highest ozone concentrations (e.g., Johnson County).
- The modeling also indicates that peak ozone concentrations will be further downwind of KC than historically observed.
- Regions in the modeling domain between major cities are predicted to have ozone concentrations similar to those upwind of KC.
- Because so many of newly designated 8-hr ozone nonattainment areas are located in these regions, they may also see a similar ozone response to local emission controls.

8-hr Ozone Nonattainment Areas

CMAQ Predicted Change in Peak 8-hr Ozone Concentrations

Summary and Conclusions (1 of 2)

- Modeling was performed for only one episode.
- Results indicate that the KC area will be barely in attainment of the 8-hr ozone standard in 2010.
- Additional local controls may provide a buffer against nonattainment for 8-hr ozone.
- In addition, these local controls have a potential to reduce ambient concentrations of particulate matter, greenhouse gases, and hazardous air pollutants.

Summary and Conclusions (2 of 2)

- Many of the new nonattainment areas in the central and eastern United States may have difficulty demonstrating attainment with local controls alone.
- As states begin to develop their State Implementation Plans for 8-hr ozone, the role of controlling regional ozone will need to be revisited.

Acknowledgements

- KDHE and MDNR: meteorological, emissions, and air quality modeling.
- MARC and KDHE: Funding for CAAP modeling.
- EPA Region 7: Emissions and AQ modeling support.
- EPRI and TCEQ: Funding the NARSTO Model Inter-comparison Study.

Questions?

Neil Wheeler Sonoma Technology, Inc. 1360 Redwood Way, Suite C Petaluma, CA 94954

707-665-9900

neil@sonomatech.com

www.sonomatech.com

