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Uncertainty Analysis of Multiscale Air Quality Models Motivation

Motivation for Efficient Uncertainty Characterization Techniques

There is a need to

• provide uncertainty information to decision makers

• identify key factors that contribute to the uncertainties the most

• utilize new data in order to reduce model and parameter uncertainties

However,

• coupling of multiple computational models results in a “nested system” of
uncertainties and variabilities

• each modeling step can require significant computational resources

Uncertainties in air quality modeling include:

• natural uncertainty

• input/parameter uncertainty

• model uncertainty

• evaluation data uncertainty
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Uncertainty Analysis of Multiscale Air Quality Models Overall Uncertainties

Propagation of Uncertainties in Air Quality Modeling using CMAQ
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CMAQ: Community Multi-scale Air Quality modeling system
BEIS: Biogenics Emission Inventory System
SMOKE: Sparse Matrix Operator Kernel Emissions modeling system
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Uncertainty Analysis of Multiscale Air Quality Models

Traditional Methods Applied to CMAQ

• Monte Carlo and Latin Hypercube Sampling (LHS)

– easy to use and apply in a black-box manner

– computationally demanding (require large number of model simulations)

– they require even more resources for obtaining “sensitivity information”

–
past studies with air quality modeling have used very few Monte Carlo
runs for studying uncertainties

∗ of the order of 20 - 200 simulations involving 10 - 100 parameters

• Direct Decoupled Method (DDM)

– provides accurate local sensitivity information

– significant memory requirements as number of parameters increase

– large number of simulations for global sensitivity/uncertainty analysis

– requires re-coding major portions of a model (not a black-box tool)
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Uncertainty Analysis of Multiscale Air Quality Models

Computationally Efficient, Alternative Techniques

• Stochastic Finite Element Method [Ghanem and Spanos, 1992]

• Deterministic Equivalent Modeling Method (DEMM) [Tatang, 1995]

• Stochastic Response Surface Method (SRSM) [Isukapalli et al., 1998;
Isukapalli, 1999]

• High Dimensional Model Representations (HDMR) [Rabitz et al., 1999; Wang
et al., 2003]

• DEMM, SRSM, and HDMR can be applied to computational models in a
black-box manner

• SRSM and HDMR have been applied to environmental and biological models
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Uncertainty Analysis of Multiscale Air Quality Models

Stochastic Response Surface Method (SRSM)

• Based on approach of response surface methods

• Transform uncertain inputs

– model parameters and input variables expressed as functions of a set of
“standard random variables” (srvs

– typically iid unit normal random variables, N(0,1)

• Assume functional form for outputs

– expressed as a hermite polynomials of the srvs with unknown coefficients
(polynomial chaos expansion)

• Run original model at a set of sample points

– points depend upon the number of uncertain parameters

• Estimate coefficients of approximation

– by regression on model calculated model responses

• Use coefficients to assess output uncertainties

– polynomial chaos expansion represents the uncertainty in model responses
– Monte Carlo simulation on polynomial functions gives estimate of

uncertainty
– Coefficient encompass a quantitative measure of relative contribution of

individual input uncertainties
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Uncertainty Analysis of Multiscale Air Quality Models

High Dimensional Model Representations (HDMR)

• HDMR: a systematic method for model reduction

– can be used to develop a “fast equivalent” model based on the analysis of
input/output relations of complex “primary” model

– Options

∗ Cut HDMR

∗ Random Sampling HDMR

• reduce the number of required model runs by “optimizing” sampling

• replace the original model with a “fast equivalent” one so that the
computational requirements are reduced

• HDMR can be an useful tool in either (1) or (2) framework

CMAS 2005 6 CCL-EOHSI: UMDNJ/Rutgers University



Uncertainty Analysis of Multiscale Air Quality Models

Uncertainties in Biogenic Emissions

• Biogenic emissions have a significant impact on local ozone levels

• These estimates are laden with major uncertainties due to:

– variability in land use and land cover

– variability in emission rates (variability in sunlight, temperature, etc.)

– uncertainties introduced when the emision rates are parameterized

• Uncertainties reported to be about a factor of 2

• Isoprene is a major component of biogenic emissions
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Uncertainty Analysis of Multiscale Air Quality Models

BEIS Uncertain Inputs/Parameters Considered
7 uncertain parameters, all independent

Param Description Distribution Mean/GM∗∗ Std. Dev. SRSM Transformation

Es Emissions flux∗ Normal -NA- 25% 1 + 0.25 ξ1

LAI Leaf area index Normal -NA- 12.5% 1 + 0.125 ξ2

Empiricial Coefficients

α light correction Lognormal 0.0027 0.0015 exp(log(0.0027) + 0.4702 ξ3)

CL1 light correction Normal 1.06 0.2 1.06 + 0.2 ξ4

CT1 temperature correction Lognormal 90,000 20,000 exp(log(90000) + 0.2147 ξ5)

CT2 temperature correction Lognormal 230,000 20,000 exp(log(230000) + 0.0865 ξ6)

TM temperature correction Normal 314 3 314 + 3 ξ7

Notes:
∗ Emissions flux is species specific
∗∗ For Lognormal distribution, the Geometric Mean (GM) is shown here. A value of “-NA-” implies
that a multiplication factor is shown here
Truncation at 2.5 standard deviations are assumed

Source for parameter distributions: Hanna et al. (2005), Monte Carlo estimation of uncertainties in
BEIS3 emission outputs and their effects on uncertainties in chemical transport model predictions, J.
Geophys. Res., 110, D01302.
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Uncertainty Analysis of Multiscale Air Quality Models

Study Domain

• Covers the entire NJ and urban
Philadelphia, PA region

• 12 km x 12 km resolution

• 20 cells in the east-west direction

• 28 cells in the north-south direction

• Grid Projection:
Lambert Conformal
α = 33, β = 45, γ = -97,
Origin Latitude = -97,
Origin Longitude = 40

!.
!.

!.

Camden

Millville

Philadelphia

±

Projection: NAD 1983 UTM Zone 18N
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Uncertainty Analysis of Multiscale Air Quality Models

Simulation Details

• Simulation Period: August 10 - 14, 2002 (UTC)

• Meteorological outputs from MM5 (Mesoscale Meteorological Model, Ver. 5)

– MM5 model results obtained from the NJDEP simulations

• Emission Inventory obtained from the NJDEP simulations

• Initial and boundary conditions obtained from a “parent simulation”

– A bench mark CMAQ simulation for the Eastern United States

– Simulation Period: August 6 - 16, 2002

– Note: Biogenic emissions in the study region are at the nominal values
during the “parent simulation”

• Number of uncertain parameters: 7 (all independent)

• Output metrics: ozone levels

– Maximum predicted hourly average ozone concentration over the entire
episode and domain

– Maximum predicted eight-hour running average of ozone concentration
over the entire episode and domain

– Ozone profiles in two grid cells covering Philadelphia, PA, and Millville, NJ
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Uncertainty Analysis of Multiscale Air Quality Models

Projection: North_America_Lambert_Conformal_Conic

0 280 560 840140 Kilometers

MANEVU Region

12x12km Modeling Domain

Domain used for “parent simulation”
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Uncertainty Analysis of Multiscale Air Quality Models

Number of simulation steps for SRSM approximation

• Second order approximation

• Number of SRSM coefficients to estimate for 7 input variables (n = 7):
1 + 2n + n(n− 1)/2 = 36

• Number of steps used for regression: twice the number of coefficients = 72

Number of simulation steps for HDMR approximation

• First order approximation

• 9 cuts (c = 9) in each dimension

• Cut percentiles: from 2 to 98: [2 14 26 38 50 62 74 86 98]

• Total number of simulations for 7 input variables (n = 7): 1 + n(c− 1) = 57

Total: 72 simulations for SRSM and 57 simulations for HDMR
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Uncertainty Analysis of Multiscale Air Quality Models

Uncertainty Propagation Steps Used in this Study

CMAQ

SMOKE
(Merging Biogenic 
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BEIS 

SMOKE
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Aggregate 
CMAQ Outputs

Emissions 
Inventory

  Repeat For Each Sample Point ..

MM5

Input/Parameter 
Sample Points
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Uncertainty Analysis of Multiscale Air Quality Models

Uncertainty estimates for peak hourly and peak 8-hr running average O3

concentrations
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Uncertainty Analysis of Multiscale Air Quality Models

Uncertainty estimates for hourly O3 concentrations at Philadelphia, PA

(median and 95th confidence intervals are shown)
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Uncertainty Analysis of Multiscale Air Quality Models

Uncertainty estimates for hourly O3 concentrations at Millville, NJ

(median and 95th confidence intervals are shown)

Hour from start of simulation (start: 08/10/2002 00:00 UTC)
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Uncertainty Analysis of Multiscale Air Quality Models

Discusssion

• SRSM and HDMR provide similar estimates of uncertainties in O3

concentrations due to uncertainties in a subset of biogenic emissions

• Using either SRSM or HDMR, uncertainties in different types of outputs and
output metrics can be estimated through a small number of simulations

• The response surfaces from HDMR and SRSM can be readily used to estimate
individual contributions of input uncertainties to outputs

• SRSM and HDMR can be used as a replacement of the ambiguous use of very
small number of Monte Carlo simulations

• The effect of input uncertainty on “overall peak” is higher than the
uncertainties at the two specific locations considered
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Uncertainty Analysis of Multiscale Air Quality Models
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Uncertainty Analysis of Multiscale Air Quality Models

Supporting Slides
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Uncertainty Analysis of Multiscale Air Quality Models

Basic Forumalation of the SRSM

Inputs: Xi = f(ξ1, ξ2, . . . , ξn), i = 1, . . . , n

Responses: y = a0 +
n∑

i1=1

ai1Γ1(ξi1) +
n∑

i1=1

n∑
i2=1

ai1i2Γ2(ξi1, ξi2)

+
n∑

i1=1

n∑
i2=1

n∑
i3=1

ai1i2i3Γ3(ξi1, ξi2, ξi3) + . . .

Γp(ξi1, . . . , ξip
) = (−1)pe

1

2
ξTξ ∂

p

∂ξi1 . . . ∂ξip

e−
1

2
ξTξ (Hermite Polynomials)
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Uncertainty Analysis of Multiscale Air Quality Models

Transformation of Uncertain Inputs

Distribution Type Transformationa

Uniform (a, b) a + (b− a)Φ(ξ)

Normal (µ,σ) µ + σξ

Lognormal (µ,σ) exp(µ + σξ)

Gamma (a,b) ab

(
ξ

√
1

9a
+ 1−

1

9a

)3

Exponential (λ) −
1

λ
log(Φ(ξ))

Weibull (a) y1/a

Extreme Value − log(y)

a ξ ∼ Normal(0,1), Φ(x) ∼ NormCDF(x),
and y ∼ Exponential(1)

For empirical distributions specified by a cumulative density function, Fx(x) = g(x)
x = g−1(Φ(ξ))
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Uncertainty Analysis of Multiscale Air Quality Models

Transformation of Correlated Distributions

• Simple cases: Dirichlet distribution (functions of independent normal random
variables)

• Simple cases: Mixtures of distributions

• Simple cases of jointly distributed random variables (e.g. joint normal random
variables)

• Jointly distributed with a covariance matrix Σ [Based on Devroye, 1986]

– correlated variables with mean µi and co-variance matrix σi (common in
risk assessment models)

∗ create Σ∗ via Σ∗
i,j = Σi,j/(σiσj)

∗ construct Y via Yi = (xi − µi)/σi

∗ construct Z = HY , where HHT = Σ∗, and

∗ express model inputs as xi = µi + σizi.
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Uncertainty Analysis of Multiscale Air Quality Models

Application of
the SRSM:

 

 

  

 

express inputs as functions of srvs 
X = F(ξ) 

(exact, if possible) 
X ≅ F(ξ) 

(for complex cases) 

explicit systems 
Y = G(X) G(X,Y) = 0 

Y = h(ξ,α) 

implicit systems 

direct solution assume a form for Y 
(e.g., series expansion) Y  = G(F(ξ)) 

mathematically tractable  
equations  

black-box models or 
complex numerical codes  

estimate α by standard 
error minimization methods 

(e.g., Galerkin’s method) 

 

collocation methods 
(e.g., ECM or  

orthogonal collocation) 

regression methods 
(if collocation methods 

don’t converge) 

estimate α using: 

evaluate 
Y  = h(ξ,α)  

computational model 
inputs (X) outputs (Y) 
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Uncertainty Analysis of Multiscale Air Quality Models

HDMR Approach

SYSTEMI O

• System (a mathematical model):

– Input I: x = {x1, x2, . . . , xn}

– Output O: g(x) = g(x1, x2, . . . , xn)

• Exponential difficulty in traditional sampling:

– sampling xi → x1
i , x2

i , . . . , xs
i , (i = 1,2, . . . , n)

– exponential effort ∼ sn

• The HDMR method expresses a model output as a expansion of correlated
functions:

g(x) = f0 +
n∑

i=1

fi(xi) +
∑

1≤i<j≤n

fij(xi, xj) + · · ·

+ f12...n(x1, x2, . . . , xn)
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Uncertainty Analysis of Multiscale Air Quality Models

HDMR Rationale

• the outputs of most physical systems do not draw on high order cooperativity
amongst the input variables

• Cut-HDMR:

– f0 = g(a)

– fi(xi) = g(xi, ai)− f0

– fij(xi, xj) = g(xi, xj, aij)− fi(xi)− fj(xj)− f0

– where a = {a1, a2, . . . , an} is a chosen reference (cut) point in the desired
domain Ω of x and

– {xi, ai} = {a1, . . . , ai−1, xi, ai+1, . . . , an}

– {xi, xj, aij} = {a1, . . . , ai−1, xi, ai+1, . . . , aj−1, xj, aj+1, . . . , an}
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