PyPASS: Python-based Performance Analysis Supporting System

Byeong-Uk Kim and Harvey E. Jeffries

Department of Environmental Sciences and Engineering University of North Carolina

Why a new tool?

High quality information is important.

 'Information' means any communication or representation of knowledge such as facts or data, in any medium or form, including *textual, numerical, graphic, cartographic, narrative, or audiovisual forms.* - OMB's definition of 'information'

Effective tools in applying science are important.

- "We must therefore be more efficient about the way we apply science through modelling, so as to leave sufficient time to do science!" – Argent, 2004
- Model performance evaluation plays a key role in using modeling results for decision making processes.
- PyPASS can provide high quality information related to model performance evaluation with high efficiency.

Goals of PyPASS development

Efficient and rapid information generation

Visualizing and summarizing observation and prediction with predefined graph/document formats

More context-rich information

 Processing virtually all observed/modeled variables (e.g meteorological/chemical signal)

Open/free (or low cost) software

Supporting performance evaluation of air quality modeling studies with little extra resources including licensing fee

Operation of PyPASS

Command-line driven package such as 'ls'

Platform/model supported

- CAMx/CMAQ CAMxSubset/CMAQExtract utilities are mandatory
- Windows XP/Linux/MacOSX

Example of PyPASS execution:

 python %PYPASS%\MakeTSSSPI ots. py -f opts\N0N0203_UHTCEQSI PBASE_OneDay. opt b2000-08-22 -e2000-08-23 HGBBPAMonData000818_000906. h5 b5b. si pcase. uh-tceq. h5 Time window
 Monitor data
 Model dataset

options

```
-i hdf5
-o output\plotout\BP_SS_TS\UHTCEQSIPBASE\ts\
-p OneDay_pph -y CStd160 -l -v 125.0 -n 3S2S_4k
-s N0 -c B -g Circle -s N02 -c G -g Diamond -s 03 -c R -g Square
-m b5b_psito2n2_4km_v6_0822_0831 -d SDash
-m b5b_psito2n2_4km_cmaq_0823_0831 -d FDot
-m b5b_q20_4km_cmaq_0823_0831 -d Dot
```

Examples of PyPASS outputs

- Bar charts
- Scatter plots
- Time series plots
- Tile plots (XY/XZ/YZ orientation)
 - Optional features: roads, monitors, wind vectors and more on cell/real coordinates for axes
- Statistics
- Reports

□ MS-WORD/HTML/PDF/TEX

Bar chart

Time series and scatter plots for chemical species

Hodogram: Time series for surface winds

Tile plot on different grids with same data

ωN

Row

Vertical tile plots

Column 29

Row 29

Tile plot with wind field

Example of statistical measures

Mean Normalized Bias

MNB = ((mod-obs)/obs).sum()/N

Mean Normalized Bias (MNB)

$$MNB = \frac{1}{N} \sum_{i=1}^{N} \frac{\left(C_p(x_i, t) - C_s(x_i, t)\right)}{C_s(x_i, t)}, t = 1, 24$$

$$MNGE = (abs(mod-obs)/obs).sum()/N$$

$$\# Unpaired peak accuracy$$

$$WDFA = (mod.max()-obs.max())/obs.max() * 100. # output is %$$

$$\# Modified Index of Agreement, d1$$

Mean Normalized Gross Error (MNGE)

$$MGE = \frac{1}{N} \sum_{i=1}^{N} \frac{\left| C_{p}(x_{i}, t) - C_{o}(x_{i}, t) \right|}{C_{o}(x_{i}, t)}, t = 1, 24$$

Unpaired Peak Prediction Accuracy (UPPA)

$$UPPA = \frac{C_{p}(x,t)_{\max} - C_{o}(x',t')_{\max}}{C_{o}(x',t')_{\max}} \times 100\%$$

Modified Index of Agreement, d_1

$$d_1 = 1.0 - \frac{\sum_{i=1}^{N} |O_i - P_i|}{\sum_{i=1}^{N} \left(\left| P_i - \overline{O} \right| + \left| O_i - \overline{O} \right| \right)}$$

Modified Coefficient of Efficiency, E_1

$$E_{1} = 1.0 - \frac{\sum_{i=1}^{N} |O_{i} - P_{i}|}{\sum_{i=1}^{N} |O_{i} - \overline{O}|}$$

d1 and E1 from Legates and MaCabe Jr., 1999

Mean Normalzied Gross Error avgobs = obs.sum()/N d1 = 1.0 - (abs(obs-mod)).sum()/(abs(mod-avgobs)+abs(obs-avgobs)).sum()# Modified Coefficient of Efficiency, e1

	SITE	MNB	MNGE	UPPA	d1	E1	Conting	ency	Tabl	e	# of	valid	data
	BAYP	-0.063	0.272	-25.6	0.772	0.589	0 -	0	0	20	20		
	HLAA	0.297	0.350	2.4	0.846	0.695	0	0	0	22	22		
	HCQA	0.391	0.391	4.1	0.800	0.581	0	0	0	18	18		
	WILT	-0.436	0.438	-35.3	0.612	0.249	0	0	0	24	24		
	HCFA	-0.058	0.372	-35.5	0.745	0.547	0	0	0	20	20		
	HALC	0.309	0.344	-9.0	0.832	0.693	0	0	0	17	17		
	HROC	0.159	0.596	-25.2	0.683	0.430	0	0	0	20	20		
)	HWAA	0.445	0.457	-6.4	0.784	0.594	0	0	0	14	14		
	HSMA	0.509	0.568	-18.0	0.746	0.552	0	0	0	18	18		
	C35C	-0.310	0.459	-29.7	0.702	0.473	0	0	0	12	12		
	HOEA	-0.141	0.353	-26.5	0.851	0.722	0	0	1	16	17		
	HO3H	-0.235	0.396	-0.5	0.887	0.753	0	0	0	21	21		
	H04H	0.286	0.496	9.9	0.710	0.288	0	0	0	18	18		
	DRPK	0.111	0.408	-26.8	0.768	0.595	1	0	3	17	21		
	LAPT	-0.172	0.239	-36.1	0.802	0.646	2	0	3	18	23		
	HOSH	-0.456	0.460	-39.0	0.716	0.476	0	0	5	16	21		
	H07H	-0.201	0.410	-32.2	0.778	0.552	0	0	1	17	18		
	H10H	0.228	0.414	-32.2	0.771	0.591	0	0	2	16	18		
	H11H	-0.316	0.420	-32.5	0.777	0.607	0	0	2	6	8		
	TLMC	0.527	0.758	-55.7	0.576	0.396	0	0	3	16	19		
	HNWA	0.617	0.704	-6.3	0.535	0.206	0	0	0	18	18		
	SHWH	0.510	0.527	-9.2	0.798	0.618	0	0	0	18	18		
	CONR	1.157	1.157	4.6	0.592	0.159	0	0	0	22	22		
	CLTA	0.400	0.670	69.7	0.560	-0.357	0	0	0	21	21		
	GALC	0.539	0.564	-12.0	0.617	0.277	0	0	0	22	22		
	JEFC	0.375	0.450	-34.7	0.649	0.427	0	0	1	17	18		
	BMTC	0.098	0.364	-32.4	0.735	0.500	0	0	1	21	22		
	S43S	0.293	0.382	-33.0	0.699	0.460	0	0	2	17	19		
	PAWC	0.231	0.356	-39.6	0.789	0.645	0	0	2	20	22		
	S42S	0.901	0.961	10.1	0.415	-0.236	0	0	0	18	18		
	S40S	0.579	0.722	-37.2	0.682	0.493	0	0	4	16	20		
	WORA	0.300	0.489	-24.1	0.521	0.202	0	0	1	17	18		

Performance of PyPASS

Evaluation condition

- □ H/W: P4 3.2 GHz/2GB RAM/3Dlabs Wildcat VP990 Pro
- □ O/S: Windows XP (Service Pack 2)
- Test period: three species on one day (one plot for each of time series plot or scatter plot, 24 hours plots for tile plots)

Time

- □ Wind field overlaid tile plots in HGA_4km outputs
 - HGA_4km (83*65): ~ 2 minutes
 - HGA_1km (74*74): ~ 30 seconds
- □ Time series plots: 2 seconds
- □ Scatter plots: 3 seconds

Storage

- □ BIN file only holds the necessary dataset from the original CAMx/CMAQ ouput
 - TX HGMCR modeling case: 451 kB holding data of 15 species on 32 monitors for 16days
- □ PyTable supports compression
 - Approximately ~40% saving compared with uncompressed file (i.e. BIN file)