A comprehensive evaluation of the Eta-CMAQ forecast model performance for O₃, its related precursors, and meteorological parameters during the 2004 ICARTT study

Shaocai Yu^{\$,} Rohit Mathur⁺, Kenneth Schere⁺, Daiwen Kang^{\$}, Brian Eder⁺, Jonathan Pleim⁺, Tanya Otte⁺

> Atmospheric Sciences Modeling Division NERL, U.S. EPA, RTP, NC 27711.

^{\$} On assignment from Science and Technology Corporation
 ⁺ On assignment from Air Resources Laboratory, NOAA

🔅 Necessary

> O₃: a secondary pollutant,

Introduction

- ⇒ Adversely affects human health
- ⇒ produced by pollution from natural and human activities
- > Warn the public:
 - ⇒ unhealthy air
 - ⇒ voluntarily reduce emission-producing activities
- ***** Forecasting methods (EPA, 1999):
 - Persistence, climatology, regression equation etc.
 - ➤ 3-D air quality models:
 - \Rightarrow Spatial and temporal distributions of O₃ and its precursors
 - \Rightarrow Understand chemical-physical processes controlling O₃ formation

- Evaluate Eta-CMAQ model performance on the spatial and temporal variations of O₃ with AIRNOW Obs over the eastern US
- Comprehensively examine the ability of Eta-CMAQ in representing chemical-physical processes for O₃ formation with 2004 ICARTT data

International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)

- ***** ICARTT Period: July 1 to August 15, 2004
- ***** Using results: **12 UTC run** and

target period for next day forecast (04 UTC to 03 UTC)

* Observations

EPA AIRNOW network: $rightarrow Hourly O_3$ at 614 sites in E US.

- > 2004 ICARTT Data (See Fig.)
 - ➡Vertical profiles (O₃, CO, NO, NO₂, HNO₃, SO₂, RH, T, WS, WD) from aircraft (P-3 and DC-8), ozonesonde, Lidar.
 - ⇒Ground data over the ocean on Ron Brown ship

Ground Data at Four AIRMAP sites

Site names	Variables
THOMPSON FARM (TF) (NH)	O3, NO, CO, JNO2, NOy, SO2, T, RH,
	wind speed, dir.
CASTLE SPRINGS (CS)	O3, NO, CO, JNO2, NOy, SO2, T, RH,
(NH)	wind speed, dir.
MOUNT WASHINGTON (MWO)	03, NO, CO, SO2, <mark>JNO2</mark>
(NH)	
APPLEDORE ISLAND (IS)	03, CO
(ME)	

1

Model domain and site (AIRNOW, AIRMAP) locations

•P-3: Northeast;
•DC-8: Eastern US.
•Ship: mid-Atlantic Ocean

Tracks of (a) P-3, (b) DC-8, (c) Ship, ozonesonde sites

Results Operational evaluation at AIRNOW sites

► Worst: 8/12: Cloud and precipitation effect

August 8,2004 20:00:00 Modeled and observed (diamond) O3 (ppb)

$\mathbf{\stackrel{\bullet}{\star}} \underline{Results}: O_3 \text{ Vertical profiles (7/1-8/15)}$

•Model reproduced vertical structure and pattern of obs at low altitude and more uniform but

•Overpredicted Obs at high altitudes

Lidar: Model reproduced obs at low altitude and more uniform

➢Ozonesonde: Over predictions above 6 km:

10000

100

10000

1000

100

Height (m)

250

50 100 150 200

100

Height (m) 1000

160 180 200

Wallops

Huntsville

200

100 120 140

100

150

10000

1000

Height (m)

10000

1000

• Impact from GFS derived LBC and coarse model resolution in FT

Pellston

250

Beltsville

200

Median O, (ppbv)

250

Results: CO and HNO₃ Vertical profiles (7/1-8/15)

CO:

➤Consistent Underpredictions.
⇒ partly due to inadequate representation of biomass burning effects from outside the

domain

HNO₃: ≻Good performance relative to P3 obs

Results: SO₂, NO, HCHO vertical profiles

Daily Layer Means

SO₂: ≻Close to obs at high altitude ≻Higher than obs at low altitude relative to P3 obs

NO:

≻Under predictions of NO at h>3000 m

⇒Aircraft and lightning NO emissions are not in inventory

HCHO:

➤Close to obs at high altitude but higher than Obs at lower altitude

Results: Meteorological vertical profiles

Water vapor (Q_v) and WS:

≻Model reproduced vertical structure well
 ⇒relative to DC-8 obs.
 >Over predicted Qv at low altitudes
 ⇒ relative to P-3 Obs

Very good for T, P, WD (not shown)

Layer means from July 1-August 15, 2004

3. Time-series evaluation at AIRMAP sites

Castle Springs (CS)

Obs

Ō.

<u>Results</u>

- **3.** Time-series at AIRMAP sites
- Hanna et al. (2001):50% uncertainty in JNO₂
 - 40 ppbv (or 20%) uncertainty in max O₃
- •Model reproduces
 - 43-53% of observed JNO2 within a factor of 1.5
- ➢ Priority: more accurate determination of JNO₂ in model

_		Mean	(ppb)	% within a factor		
	Parameters	Obs	Model	r	of 1.5	
	Castle Spring	gs (N=1047)				
	O ₃	35.17	43.63	0.493	66.6	
	NO	0.14	0.05	0.222	12.1	
	CO	188.84	108.78	0.706	19.3	
	NO _Y	2.27	3.14	0.587	43.6	
	SO ₂	1.16	0.87	0.388	29.6	
	JNO ₂ (1/S)	3.18x10 ⁻³	4.07x10 ⁻³	0.820	49.6	
	Isle of Schoa	ls (N=1078)				
	03	36.68	52.31	0.541	56.9	
	co	171.70	121.15	0.610	60.9	
	NO	0.76	0.18	0.448	0.8	
	Mount Washi	ngton (N=107	76)			
	O ₃	45.87	45.85	0.554	87.7	
	NO	3.64	0.01	-0.054	8.9	
	CO	152.43	95.19	0.301	46.7	
	NO _Y	4.04	2.23	-0.060	20.6	
5	SO ₂	0.74	0.30	-0.001	19.0	
	JNO ₂ (1/s)	3.59x10 ⁻³	4.43x10 ⁻³	0.768	43.1	
	Thompson Fa	ırm (N=1067)				
	O ₃	28.80	41.68	0.751	48.1	
	NO	0.33	0.29	0.436	31.3	
	CO	173.07	154.66	0.593	77.7	
	NO _Y	3.93	7.26	0.321	28.8	
	SO ₂	1.22	1.63	0.084	14.3	
	JNO_2 (1/s)	3.19x10 ⁻³	3.90x10 ⁻³	0.865	53.8	

Results (diagnostic evaluation)

 \checkmark NO_x-sensitive regimes: [O₃]/[NO_x], O₃ production efficiency: [NO_z]/[O₃]

>NO_x-sensitive regimes: $[O_3]/[NO_x]$ ⇒Arnold et al., 2003: • $[O_3]/[NO_x]$ <14: VOC-sensitive >46: NO_x-sensitive

Statistical summary of number of hours(The values in parentheses are the percentages (%))

	Castle Springs		MWO		Thompson Farm	
O ₃ /NO _x	Obs	Model	Obs	Model	Obs	Model
0-14	32 (7)	18 (4)	13 (4)	0 (0)	181 (38)	105 (22)
15-25	34 (7)	19 (4)	3 (1)	0 (0)	51 (11)	72 (15)
26-45	94 (20)	18 (4)	16 (5)	2 (1)	59 (12)	125 (26)
>46	312 (66)	417 (88)	285 (90)	315 (99)	188 (39)	177 (37)

 \Rightarrow Both model and obs: CS and MWO sites are mainly under strongly NO_x-sensitive conditions (>66%)

O₃ production efficiency: \mathcal{E}_N **O**₃-NO_z slope

*At rural sites in E US (Olszyna et al., 1994): \mathcal{E}_N : 5 to 10 The observational data with [O3]/[NOx]>46 (aged air masses)

Sites	Regression equations
CS (N=312)	Obs: $[O_3] = 10.7 [NO_z] + 22.8, r^2 = 0.70$
	Model: $[O_3] = 6.4[NO_z] + 30.1, r^2 = 0.61$
MWO (N=285)	Obs: $[O_3] = 9.5[NO_z] + 41.5, r^2 = 0.18$
	Model: $[O_3] = 6.7[NO_z] + 32.4$, $r^2 = 0.61$
TF (N=188)	Obs: $[O_3] = \frac{8.5}{[NO_2]} + 26.4, r^2 = 0.80$
	Model: $[O_3] = 5.2[NO_z] + 34.0, r^2 = 0.83$

<u>Conclusions</u>

- At AIRNOW sites, model was able to reproduce the daily variations of observed max 8-hr O_3 and reproduced majority (73%) of observed max 8-hr O_3 within factor of 1.5 with NMB=22%.
 - \Rightarrow Poor performance for cloudy days
- Model reproduced the O₃ vertical profiles from aircraft, lidar, and zonosonde at low altitude well but tended to overpredict in high altitude>6km
 - ⇒ attributed to GFS derived LBCs combined with coarse vertical model resolution in FT
- Model under predicted CO consistently (by ~30%) from surface to high altitude
 ⇒ partly due to inadequate representation of biomass burning effects from outside the domain
- Model under predicted NO consistently at the high altitude
 - \Rightarrow Aircraft and lightning NO emissions are not in the inventory
- > The modeled upper limits (5.2 to 6.7) of \mathcal{E}_N estimated by O3-NO_z slopes are 40% lower than the observations (8.5 to 10.7)

Future research needed

- For real time forecast of O₃, key is the prognostic model forecasts of meteorological fields:
 - \Rightarrow Cold front patterns,
 - ⇒cloud cover
 - ⇒wind fields
- Improve photochemical mechanism and emission
- Improve model's convective cloud scheme for vertical transport
- Improve the model performance for JNO₂, especially during the cloudy periods
- More evaluation using process analyses for the 2004 ICARTT data is underway

Disclaimer

The research presented here was performed under the Memorandum of Understanding between the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Commerce's National Oceanic and Atmospheric Administration (NOAA) and under agreement number DW13921548. This work constitutes a contribution to the NOAA Air Quality Program. Although it has been reviewed by EPA and NOAA and approved for publication, it does not necessarily reflect their policies or views.

Surface O₃ Model Performance: Bias Impacts of model enhancements to cloud mixing and photolysis effects

- (1) Limit cloud-top to below the GSF tropopause to reduce downdarft transport.
- (2) Use modeled and clear sky radiation field to estimate below-cloud photolysis attenuation factors

Results: CO and HNO3 Vertical profiles

(1) **P-3** (CO)

CO:

10⁴

10

10¹ 10⁴

10⁸

 10^{2}

10¹0

10⁵

10

10

10

10⁵ 10⁵ 10⁴ 10³

 10^{2}

 10^{1}_{0}

Height (m)

7/9

7/28

10

7/15

7/31

10

5

Height (m)

Consistent Underpredictions.
 Partly due to inadequate representation of biomass burning

(3) **P-3** (HNO3)

7/15

5

10

7/20

8/6

10 5 HNO₂ (ppbv)

5

7/20

8/6

7/22

8/7

5 10

8/11

5

10

8/13

10

5

8/14

5 10

5 10

effects from outside the domain

7/11

7/31

7/18

8/2

10

5

5 10

Results: SO2, NO, HCHO vertical profiles

(1) P-3 (SO2)

SO2: ≻Close to obs at high altitude ≻Higher than obs at low altitude most of time.

7/18

8/2

600

7/18

3000

6000

HCHO (pptv)

7/15

7/3

1200

7/15

7/3

6000

3000

600

10⁵

10

10

(m) 10 10⁵ 10⁵ 10⁴

10³

10²

10¹ 0

Height (m)

10

10

10

10²

10[°] 10⁵

10 10^{3}

 10^{2}

10¹ 0

O3 concentration (ppb)

