Institute for Chemical Process and Environmental Technology

The impact of GEM and MM5 meteorology on CMAQ results in eastern Canada and the northeastern US

Steve Smyth, Dazhong Yin[†], Helmut Roth, and Weimin Jiang ICPET, National Research Council of Canada, Ottawa, Ontario

Michael D. Moran MSC, Environment Canada, Toronto, Ontario

Louis-Philippe Crevier CMC, Environment Canada, Dorval, Québec

⁺ Dept. of Atmospheric Sciences University of Arizona, Tucson, Arizona

*

National Research Council Canada Conseil national de recherches Canada

Institute for Chemical Process and Environmental Technology

Outline

- Introduction
- Modelling systems
- Comparison metrics
- Comparison of GEM and MM5 meteorology
- Impact of meteorology on emissions
- Impact of meteorology on CMAQ results
- Summary and Conclusions

Institute for Chemical Process and Environmental Technology

Introduction

- Compare and evaluate
 - selected MM5 and GEM meteorological fields
 - the emission fields generated using GEM and MM5 meteorology in SMOKE
 - the impact of GEM and MM5 meteorology on CMAQ results
- Performance evaluation of each model against measurement data completed but not presented

Institute for Chemical Process and Environmental Technology

Modelling Systems

- Meteorological Models
 - GEM v3.1.1
 - MM5 v3.3
 - GEM-MCIP
 - Extension of MCIP to work with both GEM and MM5 met fields
- Emissions
 - SMOKE v2.0
 - Canadian emissions:
 - 1995 CAC emissions inventory from EC; 1999 VMT data from SENES; MOBILE6.2C; GEM and MM5 meteorology
 - U.S. emissions:
 - 1999 NEI v3; 1999 VMT data from NEI; MOBILE6.2; GEM and MM5 meteorology

Institute for Chemical Process and Environmental Technology

Modelling Systems (cont.)

- Air Quality
 - CMAQ v4.3
 - Radm2; aero2; NRC PMx CMAQ post-processor
- Modelling Domain and Simulation Period
 - 0000 UTC 11 July 1999 to
 2300 UTC 19 July 1999 (9 days)
 - 68×49 grid with 36-km resolution
 - 15 vertical sigma layers

Institute for Chemical Process and Environmental Technology

Model Comparison Metrics

Comparison Metric	Definition
Mean Difference (MD)	$MD = \frac{1}{n} \sum_{i} \left(GEM_{i} - MM5_{i} \right)$
Normalized Mean Difference (NMD)	$NMD = \frac{\sum_{i} (GEM_{i} - MM5_{i})}{\sum_{i} MM5_{i}} \times 100\%$
Normalized Absolute Difference (NAD)	$NAD = \frac{\sum_{i} GEM_{i} - MM5_{i} }{\sum_{i} MM5_{i}} \times 100\%$

Institute for Chemical Process and Environmental Technology

Comparison of GEM and MM5 Meteorology

- Moderate difference in temperature between GEM and MM5
- Relative humidity (RH) shows largest NMD of meteorological variables investigated
 - Affects $PM_{2.5}$ and PM_{10} concentrations
- Wind speed has largest NAD

model results	pressure (hPa)		temperature (°C)		wind speed (m s ⁻¹)		RH (%)		
	GEM	MM5	GEM	MM5	GEM	MM5	GEM	MM5	
n	719,712	719,712	719,712	719,712	745,200	745,200	719,712	719,712	
mean	996.6	995.6	21.4	22.7	4.6	4.0	78.7	67.5	
standard deviation	21.4	21.6	4.5	4.8	2.6	2.1	13.4	18.2	
comparison statistics									
MD	1.0 ł	1.0 hPa		-1.3°C		0.6 m s ⁻¹		11.2 %	
NMD	0.1	%	-5.6%		15.0 %		16.6 %		
NAD	0.2 %		10.1%		35.9 %		21.5 %		

Institute for Chemical Process and Environmental Technology

Impact of Meteorology on Emissions

- Largest impact on Biogenic emissions
 - Biogenic emission correction factors based on temperature except ISO which is also based on photosynthetically active radiation (PAR)
 - Therefore differences mainly due to variations in temperature between the models

	on-road mobile emissions			biogenic emissions			total emissions		
pollutant	(metric kilotons)		(m	(metric kilotons)			(metric kilotons)		
	GEM	MM5	RD ^a (%)	GEM	MM5	RD (%)	GEM	MM5	RD (%)
CO	837.4	836.7	0.1	-	-	-	1269.0	1268.4	0.1
VOC	85.5	88.4	-3.3	880.5	1056.1	-16.6	1090.9	1269.4	-14.1
NOx	121.6	122.0	-0.3	8.1	9.2	-11.8	248.6	250.1	-0.6
TPM	3.0	3.0	0	-	-	-	74.4	74.4	0
NH3	3.3	3.3	0	-	-	-	45.9	45.9	0
SOx	4.1	4.1	0	-	-	-	178.4	178.4	0
TOTAL	1062.9	1065.4	-0.2	888.6	1065.3	-16.6	2948.2	3127.4	-5.7

^a Relative Difference (RD) = (GEM – MM5) / MM5 × 100%

4th Annual Models-3 Conference, Chapel Hill, NC, September 26-28, 2005

Institute for Chemical Process and Environmental Technology

Vertical Distribution of Point Source Emissions

- Layers 1 through 5
 - Larger in GEM-based results
- Layers 6 through 15
 - Larger in MM5-based results

Institute for Chemical Process and Environmental Technology

Impact of Meteorology on CMAQ Results

- Moderate difference in average ozone concentrations
- Larger difference between average PM₁₀ concentrations than average PM_{2.5} concentrations
 - Due to effect of RH on PM mass distributions

model results	O ₃ (ppb)		PM ₁₀ (µg m⁻³)	PM _{2.5} (µg m ⁻³)				
	GEM	MM5	GEM	MM5	GEM	MM5			
mean	44.4	45.2	13.6	9.6	6.9	6.5			
standard deviation	17.7	15.9	17.6	11.5	8.1	7.4			
comparison statistics	comparison statistics								
MD	-0.8 ppb		4.0 µg m ⁻³		0.4 µg m⁻³				
NMD	-1.7 %		41.2 %		6.0 %				
NAD	15.9 %		68.7 %		44.4 %				

Institute for Chemical Process and Environmental Technology

Influence of RH on PM Size and Mass Concentration

- As shown previously:
 - Avg. GEM RH 78.7%
 - Avg. MM5 RH 67.5%
- Higher RH in the GEM model causes shift towards larger particle diameters
- Effect seen even when AH2O is excluded from the average mass distribution curve

Avg. PM Mass Distribution w/ AH2O

Avg. PM Mass Distribution w/o AH2O

NCCNRC

Institute for Chemical Process and Environmental Technology

Speciated PM

- Larger differences in speciated PM_{i+j} concentrations of those species involved in thermodynamic equilibrium (ASO4/ANO3/ANH4)
 - Due to differences in RH between GEM and MM5
- Large relative difference in AH2O concentrations

	PM _{i+j} (µg m ⁻³)		F	PM _{2.5} (μg m ⁻³)			PM ₁₀ (μg m ⁻³)		
	GEM	MM5	RD (%)	GEM	MM5	RD (%)	GEM	MM5	RD (%)
ASO4	3.92	2.86	37.1	1.75	1.96	-10.7	3.07	2.62	17.3
ANO3	0.331	0.180	83.9	0.136	0.119	14.2	0.244	0.162	50.7
ANH4	1.08	0.849	27.2	0.508	0.615	-17.4	0.871	0.797	9.28
AORGPA	0.182	0.177	2.82	0.091	0.133	-31.7	0.150	0.168	-10.6
AORGA	0.250	0.234	6.83	0.130	0.177	-26.8	0.205	0.221	-7.23
AORGB	0.537	0.665	-19.2	0.312	0.523	-40.2	0.459	0.630	-27.1
AEC	0.153	0.146	4.79	0.076	0.110	-31.3	0.126	0.139	-9.35
A25	0.784	0.737	6.38	0.383	0.552	-30.5	0.643	0.701	-8.27
AH2O	13.1	5.74	128	3.44	2.25	52.7	7.37	3.76	95.9

Institute for Chemical Process and Environmental Technology

Sensitivity Tests

RH Sensitivity Test

Base Case: GEM-based model simulation

Sensitivity Case: 25% reduction in water vapour mixing ratio (corresponding reduction of ~25% in RH)

- produced similar conclusions regarding affect of RH difference on PM concentrations
- <u>CMAQ Configuration</u>

Reran using CMAQ v4.4 with radm2, aero3

 decreases in PM concentrations and changes in statistics but overall conclusions were the same

NRC - CNRC Institute for Chemical Process and Environmental

Technology

Summary and Conclusions

- Differences between investigated GEM and MM5 meteorological fields were moderate with RH having the largest NMD of 16.6%
- Moderate difference in temperature (1.3°C) had large impact on biogenic emissions
- Moderate difference in average ground level ozone concentrations between the two CMAQ results (NAD of 15.9%)
- For aerosol concentrations, the most influential meteorological variable was RH that affected PM_{2.5} and PM₁₀ concentrations due to the shift towards larger diameters at higher RH
- Overall, the study showed that the use of GEM meteorology produces CMAQ results comparable to those generated using MM5 meteorology

S. Smyth, D. Yin, H. Roth, W. Jiang, M.D. Moran, L.-P. Crevier, 2005. The impact of GEM and MM5 meteorology on CMAQ air quality modeling results in eastern Canada and the northeastern United States. *Journal of Applied Meteorology*. (Submitted)

Institute for Chemical Process and Environmental Technology

Acknowledgements

- Dr. Robert Bloxam and Dr. Andrei Chtcherbakov of the Ontario Ministry of Environment
 - transfer of MM5 data and measurement data
- Sylvain Ménard of Environment Canada
 - performing the GEM simulations
- Rowan Williams Davies & Irwin Inc. (RWDI)
 - performing the MM5 simulations
- Pollution Data Branch of Environment Canada
 - 1995 Criteria Air Contaminants emissions inventory
- U.S. EPA and CMAS
 - U.S. emissions data, SMOKE, CMAQ, MCIP

Institute for Chemical Process and Environmental Technology

> Science at work for Canada

National Research Council Canada Conseil national de recherches Canada

Institute for Chemical Process and Environmental Technology

Performance Statistics: Meteorology

measurement site	pressure		tempe	rature	wind speed		
statistics	(hF	Pa)	(°	C)	(m s ⁻¹)		
no. sites	1	0	1	0	10		
n	12	29	12	28	124		
measured mean	99	7.4	23	3.0	3.5		
standard deviation	11.6		5	.6	2.1		
performance statistics	GEM	MM5	GEM	MM5	GEM	MM5	
modelled mean	994.8	992.4	22.0	24.9	4.0	3.4	
standard deviation	7.7 8.6		4.6	5.0	1.9	1.6	
MB	-2.5 -4.9		-1.0	2.0	0.57	-0.10	
NMB (%)	-0.25 % -0.49 %		-4.4 %	8.6 %	16.4 %	-2.9 %	
ME	4.7	5.9	2.2	2.6	1.5	1.4	
NME (%)	0.47 %	0.59%	9.4 %	11.3 %	43.6 %	41.8 %	

Institute for Chemical Process and Environmental Technology

Performance Statistics: Air Quality

measurement site	O ₃		PN	/I ₁₀	PN	PM _{2.5}	
statistics	(ppb)		(µg	m⁻³)	(µg m⁻³)		
no. sites	6	40	3	7	33		
n	133	639	74	99	6764		
measured mean	4(0.0	38	9.6	21.9		
standard deviation	24.8		29	.3	16.5		
performance statistics	GEM	MM5	GEM	MM5	GEM	MM5	
modelled mean	47.7	48.4	29.6	21.0	14.4	13.9	
standard deviation	20.4	20.2	23.8	15.7	14.2	13.6	
MB	7.7 8.3		-9.0	-17.7	-7.5	-8.0	
NMB (%)	19.1 %	20.8 %	-23.4 %	-45.7 %	-34.4 %	-36.4 %	
ME	16.1	16.2	18.3	21.2	12.5	13.0	
NME (%)	40.2%	40.3 %	47.3 %	54.8 %	57.1 %	59.2 %	