SOURCE APPORTIONMENT OF FINE ORGANIC AEROSOL USING CMAQ TRACERS

Jaemeen Baek, Sunkyoung Park, Yongtao Hu, Armistead G. Russell

Georgia Institute of Technology

4th Annual CMAS Models-3 User's Conference

July 27, 2005

Objectives

- Implement and evaluate the reliability of using tracers for fine organic PM in CMAQ (CMAQ-TR)
- Apply CMAQ-TR to simulating source-specific impacts of regional emissions on ambient organic aerosol concentrations
- Comparing source apportionment results with receptor models

Modeling domain

Accuracy of CMAQ results – OC & EC

CMAQ-Tracer method

- Method
 - Add tracers for primary organic aerosols categorized into 34 sources, such as wild fires, fireplaces, natural gas combustion, etc.
- Reliability
 - Source apportionment results of 5 categories were compared with those using Brute Force
 - Mean fractional errors between two results were less than 5% with less than 3% of mean fractional bias for any source
- Usefulness
 - Detailed source apportionment of primary aerosols
 - Enhanced integrated emission-based/receptor model method

Regional impacts of emissions from the Atlanta area

*1.0 – 100% of primary organic aerosol came from the Atlanta area

Comparison with receptor models

- Positive Matrix Factorization (PMF)
 - Ambient measurements and meteorology data
 - Source profiles are obtained by factor analysis
- Chemical Mass Balance-Regular (CMB-RG) model
 - Ambient measurements and source profiles
 - Source profiles are measured at emission sources
 - Inorganic and metal species as fitting species
- Chemical Mass Balance-Molecular marker (CMB-MM) model
 - Additional organic compounds are used as fitting species

* W. Liu and S. Lee, 2005 (PMF, CMB-RG), B. Yan and M. Zheng, 2004 (CMB-MM)

Comparison – Source apportionment

Why are they different?

- Difference in reconciled concentrations
- Differences between SMOKE speciation profiles and source profiles in receptor models
- Unaccounted sources in receptor models
- Accuracy of source profiles
- OM to OC conversion

Difference in reconciled concentrations

- Simulated OC at JST was high especially in Jan., 2002
- Difference between reconciled concentrations is more related with contribution of each of source categories than total OC concentration

<Reconciled concentrations>

JST. Jan., 2002 CMB/OBS CMAQ/OBS 70 62.1 60 50 41 40 33.3 28.2 30 14.7 20 10 -0 ĥ Z ő ŝ e L \mathbf{x} ኖ ര് ത ₹

<Ratios of estimated concentrations to observations>

Different EC/OC ratios in source profiles

- EC to OC ratios play an important role in source apportionments of diesel exhaust and industrial process
- Source profiles in receptor models are mixtures of many sources (e.g., a wood burning category includes sub-categories such as forest fire, fireplace and leaf species burning)
- Sub-categories have different EC/OC ratios in SMOKE profiles
- Source profiles in receptor models should be site specific

LAMDA, Georgia Institute of Technology

Unaccounted sources in receptor models

- Important sources of primary organic aerosol
 - According to CMAQ simulations and the inventory, different sites have different dominant sources
 - If there are missing sources in receptor models, source apportionment results are in substantial errors (Christensen, 2004)

Jefferson St.

CMAQ results	CMB-RG / PMF		CMB-MM	
	Jul.2001	Jan. 2002	Jul., 2001 Ja	n., 2002
Total POA (mg/m ³)	1.85	6.18	1.85	6.18
Sum of POA from sources treated in receptor models	0.95	4.26	1.69	5.95
Sum of POA from sources not-treated in receptor models	0.9 (49%)	1.92 (31%)	0.16 (8%)	0.23 (4%)

Conversion from organic matter to organic carbon

- CMAQ organic carbon concentrations
 - Simulation results of organic aerosol from CMAQ are concentrations of organic matter
 - A conversion factor from OM to OC is set as 1.4
 - Conversion factors are different from sources; factors are needed to be defined at each of sites (Turpin, 2000)
- Molecular weight per carbon weight (Rogge, 1993; Schauer, 1998)

Compound class	MWt/C Wt	Compound class	MWt/C Wt
n-Alkanes	1.2	Diterpenoid acids	1.3
n-Alkanoic acids	1.3-1.5	РАН	1.0-1.1
n-Alkenoic acids	1.3-1.5	Cholesterol	1.2
Ketocarboxylic acids	1.9-3.1	Levoglucosan	2.3

Accuracy of source profiles

- Some reconciled species are markedly overestimated in CMAQ
 - Ratios of simulated concentrations of Si to observations are 25 in Jul., 2001, and 33 in Jan., 2002
 - AI, Ca and K have ratios higher than 20 in Jan., 2002
 - Octadecenoic acid, benzo(k-,b-)fluoranthen, abietic acid were overestimated by a factor of 10

Further studies

- Improving CMAQ and receptor models
 - Inverse modeling using reconciled concentrations of species
 - Site specific OM to OC conversion factors
 - Modification of source profiles in receptor models and speciation profiles in CMAQ (SMOKE) model
 - Implementing results from recent monitoring studies (Prescribed burns, highway/rural monitoring)
 - Identifying unknown sources in receptor models
 - Further inter-comparison with receptor models
 - Further evaluation with chemically detailed observations
 - Identifying SOA tracers

Thank you for your attention!