An Operational Evaluation of the 2005 Release of Models-3 CMAQ

K. Wyat Appel*, Alice Gilliland* and Brian Eder*

*Atmospheric Sciences Modeling Division, Air Resources Laboratory, NOAA, RTP, NC 27711
In partnership with the National Exposure Research Laboratory, EPA

Presented by Wyat Appel
September 27, 2005
CMAQ v4.5: Major Updates

1) Aerosols
 • Added sea salt (fine equilibrium; non-interactive coarse mode) -- aero4
 • Updated aerosol dry deposition algorithm
 • Updated ISORROPIA to v1.5 (25 Oct 2003) and fixed some discontinuities
 • Modified SO$_4$ used in ISORROPIA call
 • Corrected inconsistency in MINL2SG (aerodepv)
 • Corrected the EMSULF (H$_2$SO$_4$ emissions) unit conversion bug

2) Chemistry
 • Added CB4/chlorine chemistry and associated EBI solver
 • Added CB4/air toxics and SAPRC99/air toxics chemistry and associated EBI solvers

3) PBL modeling
 • Updated to use PURB (% urban) for setting minimum K_z

4) Clouds
 • Added new sub-grid cloud mixing algorithm/module (based on ACM)
Model Characteristics for Evaluation Simulation

- 2005 Release of CMAQ (v4.5)
- 12km × 12km Eastern U.S. domain
- 14 vertical layers
- CB-IV gas-phase chemistry, EBI solver and AE4 aerosol module
- ACM cloud module, EBI solver
- Mass continuity scheme
- MM5 meteorology (2001) processed with MCIP v3.0
Model Simulation - Emissions

- EPA’s 2001 NEI
- MOBILE6 of mobile emissions
- BEIS 3.13 for biogenic emissions
- Seasonality of NH$_3$ estimated by inverse modeling
 - Gilliland et al., available in Atmos. Env. special issue on model evaluation
- Emissions processed using SMOKE
Three Additional Evaluation Simulations

1. Annual simulation with 36km × 36km grid resolution using CMAQ v4.5 (parent domain for 12-km simulation)

2. Annual simulation with 36km × 36km grid resolution using CMAQ v4.4

3. 12km × 12km domain simulation using CMAQ v4.4 for winter and summer seasons only
Evaluation Report

• Comprehensive evaluation of CMAQ v4.5 at 12-km grid resolution was performed
 ▪ Seasonal analysis (winter (DJF), spring (MAM), summer (JJA) and fall (SON))
 ▪ Ozone, organic and inorganic aerosols, total PM$_{2.5}$ mass and precipitation chemistry
 ▪ 36-km versus 12-km performance comparison
 ▪ CMAQ v4.4 versus v4.5 performance comparison
• Model to Observation pairing accomplished using Site Compare (available with 2005 release)
• Statistics and plots generated using AMET (information available during poster session)
• A very small portion of the complete report is shown here
Observation Networks

- AQS (majority urban)
 - O$_3$
- IMPROVE (rural)
 - SO$_4$, NO$_3$, EC, OC and PM$_{2.5}$
- STN (urban)
 - SO$_4$, NO$_3$, NH$_4$, EC, OC and PM$_{2.5}$
- CASTNet (sub-urban and rural)
 - SO$_4$, NO$_3$, NH$_4$, HNO$_3$ and TNO$_3$
- NADP (rural)
 - Wet deposition SO$_4$, NO$_3$, NH$_4$; precipitation
8-hr Maximum Ozone
High bias at low concentrations (10 – 50 ppb)

CMAQ v4.5 (12km)

Good agreement during the day

Model not capturing overnight lows

Higher biases along the coast

Higher errors along the coast

NMB = 1.62%
NME = 17.4%
RMSE = 12 ppb
O_3 performance: v4.4 versus v4.5, 12km versus 36km

Similar O_3 bias and error at 12km for v4.4 and v4.5

Bias at 12km is improved versus 36km
Organic and Inorganic Aerosols

IMPROVE, STN and CASTNet
SO₄, NO₃ and NH₄, EC, OC, PM₂.₅, HNO₃
Under-predictions in SO$_4$, NO$_3$, EC and OC contribute to under-predictions in PM$_{2.5}$ in the spring and summer.

Over-predictions in SO$_4$ and NO$_3$ contribute to over-predictions in PM$_{2.5}$ in the fall.
Total PM$_{2.5}$ mass is over-predicted for much of the year (other than summer). Due to the over-prediction in NO$_3$, NH$_4$ and EC.

PM$_{2.5}$ performance during the summer is good, however, there appears to be compensating biases, with over-predictions in SO$_4$, NH$_4$ and EC and under-predictions in NO$_3$ and OC.
CASTNet (v4.5, 12km)

- SO$_4$ under-predicted in the winter
- NO$_3$ over-predicted in spring and fall
- NH$_4$ over-predicted in the fall, under-predicted in the summer
- HNO$_3$ and TNO$_3$ over-predicted for the latter half of the year
- NH$_3$ emissions adjustment may be needed in spring and fall
Under-predictions in winter and spring

Nearly unbiased in the summer

Over-predictions in the fall

SO$_4$ v4.5, 12km
Under-predictions in winter and spring, similar to 12km.

Summer SO$_4$
CMAQ v4.5 (36km)

Large under-predictions in summer at 36km, versus nearly unbiased at 12km.

Over-prediction in fall is larger at 12km.

RESEARCH & DEVELOPMENT
Building a scientific foundation for sound environmental decisions
Large over-predictions of EC at urban STN sites.

EC is generally under-predicted at rural IMPROVE sites.

Issue in the urban areas?

EC v4.5, 12km
Over-prediction at STN sites not as large at 36km as 12km

36km EC performance at IMPROVE sites is similar to 12km performance

Over-prediction at STN sites not as large at 36km as 12km
CMAQ v4.4 versus v4.5
Soccer goal plot - Winter v4.4 versus v4.5

Better performance for IMPROVE NO₃ and PM₂.₅
Little change in performance of other species
• Better performance for SO$_4$ (all networks)
• CASTNet TNO$_3$ and NADP NH$_4$ improved
• IMPROVE EC and PM$_{2.5}$ performance decreases
• CASTNet NH$_4$ performance decreases
The bias of SO4 in the winter is slightly improved in v4.5. In the summer, the SO4 bias is much better in v4.5.
Nitrate

NO$_3$ bias and error in the winter is improved in v4.5

Winter NO$_3$
CMAQ v4.4 (12km)

Summer NO$_3$
CMAQ v4.4 (12km)

NO$_3$ bias in the summer is slightly worse in v4.5

Winter NO$_3$
CMAQ v4.5 (12km)

Summer NO$_3$
CMAQ v4.5 (12km)
Summer NH$_4$

NH$_4$ performance in the summer is mixed

Summer PM$_{2.5}$

PM$_{2.5}$ under-predictions at IMPROVE sites are larger in v4.5

RESEARCH & DEVELOPMENT
Building a scientific foundation for sound environmental decisions
Precipitation Chemistry

NADP Wet Deposition SO$_4$, NO$_3$ and NH$_4$
NADP

- SO$_4$ performance is relatively good throughout the year
- NO$_3$ is under-predicted in the spring, summer and fall and over-predicted in the winter
- NH$_4$ is generally under-predicted throughout the year
- Precipitation performance is relatively good, although there are issues in the fall
Large under-predictions in the spring and summer

Wet Deposition NO₃

Winter NO₃
CMAQ v4.5 (12km)

Spring NO₃
CMAQ v4.5 (12km)

Summer NO₃
CMAQ v4.5 (12km)

Fall NO₃
CMAQ v4.5 (12km)
Differences in precipitation bias in the winter and spring are small.
Precipitation

Differences in precipitation bias in the summer and fall are relatively large.
Summary

- V4.5 O₃ bias and error similar to v4.4
- SO₄ bias and error is improved versus v4.4
- NO₃ bias is mixed between versions and grid resolutions
- EC bias and error is much higher at 12km than 36km
- Wet deposition SO₄ performance is relatively good
- Wet deposition NO₃ and NH₄ are generally under-predicted
- Precipitation bias and error values in the winter and spring are comparable at 36km and 12km
- Precipitation bias in the summer and fall is considerably different at 36km and 12km
Further Investigation

- O_3 overnight bias
 - K_z minimum?
- EC and OC under-predictions at IMPROVE
- Large EC over-predictions at STN
 - Comparison issues
 - Urban emissions issue?
- HNO_3 over-prediction in spring through fall
- Wet deposition NO_3 under-prediction
 - Needs investigating
Lastly

- Complete evaluation report available through CMAS
- The authors would like to acknowledge:
 - Lucille Bender with CSC
 - Steven Howard for his Site Compare code
 - Alfreida Torian for help with data management
 - Shawn Roselle for model development coordination
 - Jim Godowitch for reviewing this material
 - Sharon Phillips for collaboration and reviewing this material

DISCLAIMER: The research presented here was performed under the Memorandum of Understanding between the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Commerce's National Oceanic and Atmospheric Administration (NOAA) and under agreement number DW13921548. This work constitutes a contribution to the NOAA Air Quality Program. Although it has been reviewed by EPA and NOAA and approved for publication, it does not necessarily reflect their policies or views.