An Operational Evaluation of the 2005 Release of Models-3 CMAQ

K. Wyat Appel*, Alice Gilliland* and Brian Eder*

*Atmospheric Sciences Modeling Division, Air Resources Laboratory, NOAA, RTP, NC 27711 In partnership with the National Exposure Research Laboratory, EPA

> Presented by Wyat Appel September 27, 2005

CMAQ v4.5: Major Updates

- 1) Aerosols
- Added sea salt (fine equilibrium; non-interactive coarse mode) -aero4
- Updated aerosol dry deposition algorithm
- Updated ISORROPIA to v1.5 (25 Oct 2003) and fixed some discontinuities
- Modified SO₄ used in ISORROPIA call
- Corrected inconsistency in MINL2SG (aerodepv)
- Corrected the EMSULF (H₂SO₄ emissions) unit conversion bug

- 2) Chemistry
- Added CB4/chlorine chemistry and associated EBI solver
- Added CB4/air toxics and SAPRC99/air toxics chemistry and associated EBI solvers
- 3) PBL modeling
- Updated to use PURB (% urban) for setting minimum K_z
- 4) Clouds
- Added new sub-grid cloud mixing algorithm/module (based on ACM)

RESEARCH & DEVELOPMENT

Model Characteristics for Evaluation Simulation

- 2005 Release of CMAQ (v4.5)
- 12km × 12km Eastern U.S. domain
- 14 vertical layers
- CB-IV gas-phase chemistry, EBI solver and AE4 aerosol module
- ACM cloud module, EBI solver
- Mass continuity scheme
- MM5 meteorology (2001) processed with MCIP v3.0

RESEARCH & DEVELOPMENT

Model Simulation - Emissions

- EPA's 2001 NEI
- MOBILE6 of mobile emissions
- BEIS 3.13 for biogenic emissions
- Seasonality of NH₃ estimated by inverse modeling
 - Gilliland et al., available in Atmos. Env. special issue on model evaluation
- Emissions processed using SMOKE

RESEARCH & DEVELOPMENT

Three Additional Evaluation Simulations

- Annual simulation with 36km × 36km grid resolution using CMAQ v4.5 (parent domain for 12-km simulation)
- 2. Annual simulation with 36km × 36km grid resolution using CMAQ v4.4
- 12km × 12km domain simulation using CMAQ v4.4 for winter and summer seasons only

RESEARCH & DEVELOPMENT

Evaluation Report

- Comprehensive evaluation of CMAQ v4.5 at 12-km grid resolution was performed
 - Seasonal analysis (winter (DJF), spring (MAM), summer (JJA) and fall (SON))
 - Ozone, organic and inorganic aerosols, total PM_{2.5} mass and precipitation chemistry
 - 36-km versus 12-km performance comparison
 - CMAQ v4.4 versus v4.5 performance comparison
- Model to Observation pairing accomplished using Site Compare (available with 2005 release)
- Statistics and plots generated using AMET (information available during poster session)
- A very small portion of the complete report is shown here
 - Full evaluation report available through CMAS at http://www.cmascenter.org/docs/CMAQ/v4.5/CMAQv.5_EvaluationDocument-Final2005.pdf

RESEARCH & DEVELOPMENT

Observation Networks

- AQS (majority urban)
 - O₃
- IMPROVE (rural)
 - SO₄, NO₃, EC, OC and PM_{2.5}
- STN (urban)
 - SO₄, NO₃, NH₄, EC, OC and PM_{2.5}
- CASTNet (sub-urban and rural)
 - SO₄, NO₃, NH₄, HNO₃ and TNO₃
- NADP (rural)
 - Wet deposition SO₄, NO₃, NH₄; precipitation

RESEARCH & DEVELOPMENT

8-hr Maximum Ozone

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

Organic and Inorganic Aerosols

IMPROVE, STN and CASTNet SO₄, NO₃ and NH₄, EC, OC, PM_{2.5}, HNO₃

RESEARCH & DEVELOPMENT

IMPROVE (v4.5, 12km)

Under-predictions in SO₄, NO₃, EC and OC contribute to underpredictions in $PM_{2.5}$ in the spring and summer.

Over-predictions in SO_4 and NO_3 contribute to over-predictions in $PM_{2.5}$ in the fall.

J3a b313 12km EC for improve from 20000101 to 20011231 All Sites, J3a b313_12km , improve IMPROVE CMAQ FC 0.6 0.5 4 EC (ug/m^3) o 0.3 0.2 0.1 0.0 2 3 5 9 10 11 12 4 6 7 8 Months

J3a_b313_12km OC for IMPROVE from 20000101 to 20011231 : All Sites

J3a b313 12km PM25 for improve from 20000101 to 20011231 : All Sites

RESEARCH & DEVELOPMENT

J3a b313 12km NO3 for stn from 20000101 to 20011231 : All Sites

J3a b313 12km SO4 for stn from 20000101 to 20011231 : All Sites

STN

Total PM_{2.5} mass is over-predicted for much of the year (other than summer). Due to the over-prediction in NO₃, NH₄ and EC.

 $PM_{2.5}$ performance during the summer is good, however, there appears to be compensating biases, with over-predictions in SO₄, NH₄ and EC and under-predictions in NO₃ and OC.

J3a_b313_12km NH4 for stn from 20000101 to 20011231 : All Sites

CASTNet (v4.5, 12km)

- SO₄ under-predicted in the winter
- NO3 over-predicted in spring and fall
- NH₄ over-predicted in the fall, underpredicted in the summer
- \bullet HNO_{\rm 3} and TNO_{\rm 3} over-predicted for the latter half of the year
- NH₃ emissions adjustment may be needed in spring and fall

J3a_b313_12km NO3 for castnet from 20000101 to 20011231 : All Sites

J3a_b313_12km HNO3 for castnet from 20000101 to 20011231 : All Sites

All Sites, J3a b313_12km , castnet CASTNet -- CMAQ S HNO3 (ug/m^3) 3 N 0 2 3 9 10 11 12 4 5 6 7 8 Months

J3a_b313_12km TNO3 for castnet from 20000101 to 20011231 : All Sites

۲

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

CMAQ v4.4 versus v4.5

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

Precipitation Chemistry

NADP Wet Deposition SO₄, NO₃ and NH₄

RESEARCH & DEVELOPMENT

J3a_b313_12km SO4 for NADP_dep from 20000101 to 20011231 : All Site

J3a b313 12km NH4 for NADP dep from 20000101 to 20011231 : All Site

NADP dep -- CMAQ

NADP

• SO₄ performance is relatively good throughout the year

• NO₃ is under-predicted in the spring, summer and fall and over-predicted in the winter

• NH₄ is generally underpredicted throughout the year

 Precipitation performance is relatively good, although there are issues in the fall

9 10

8

11 12

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

Summary

- V4.5 O_3 bias and error similar to v4.4
- SO₄ bias and error is improved versus v4.4
- NO₃ bias is mixed between versions and grid resolutions
- EC bias and error is much higher at 12km than 36km
- Wet deposition SO₄ performance is relatively good
- Wet deposition NO₃ and NH₄ are generally under-predicted
- Precipitation bias and error values in the winter and spring are comparable at 36km and 12km
- Precipitation bias in the summer and fall is considerably different at 36km and 12km

RESEARCH & DEVELOPMENT

Further Investigation

- O₃ overnight bias
 - K_z minimum?
- EC and OC under-predictions at IMPROVE
- Large EC over-predictions at STN
 - Comparison issues
 - Urban emissions issue?
- HNO₃ over-prediction in spring through fall
- Wet deposition NO₃ under-prediction
 - Needs investigating

۲

RESEARCH & DEVELOPMENT

• Complete evaluation report available through CMAS

- The authors would like to acknowledge:
 - <u>Lucille Bender</u> with CSC
 - <u>Steven Howard</u> for his Site Compare code
 - <u>Alfreida Torian</u> for help with data management
 - <u>Shawn Roselle</u> for model development coordination
 - Jim Godowitch for reviewing this material
 - <u>Sharon Phillips</u> for collaboration and reviewing this material

DISCLAIMER: The research presented here was performed under the Memorandum of Understanding between the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Commerce's National Oceanic and Atmospheric Administration (NOAA) and under agreement number DW13921548. This work constitutes a contribution to the NOAA Air Quality Program. Although it has been reviewed by EPA and NOAA and approved for publication, it does not necessarily reflect their policies or views.

RESEARCH & DEVELOPMENT