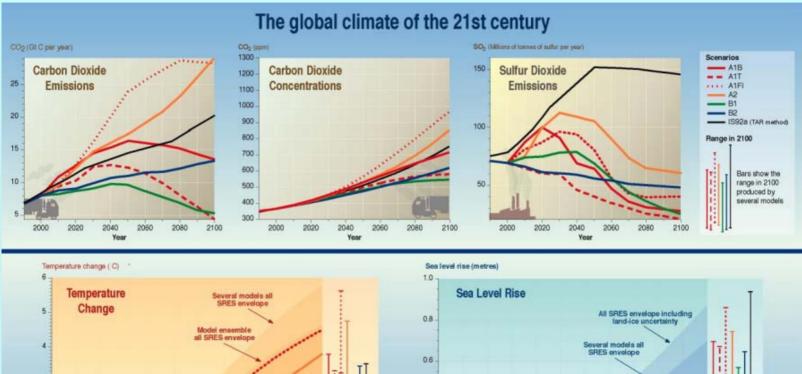
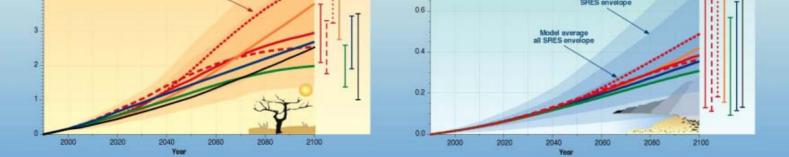
Sensitivity Assessment of Ozone and Fine Particulate Matter to Emissions Under the Influence of Future Climate and Emission Changes

Kasemsan Manomaiphiboon, Armistead G. Russell, Sergey Nepelenok, Sun-Kyoung Park, Mehmet T. Odman (School of Civil and Environmental Engineering, GaTech) Jung-Hun Woo, Shan He, Praveen Amar (NESCAUM) Lai-Yung (Ruby) Leung (Pacific Northwest National Laboratory) and Chien Wang (MIT) September 2005

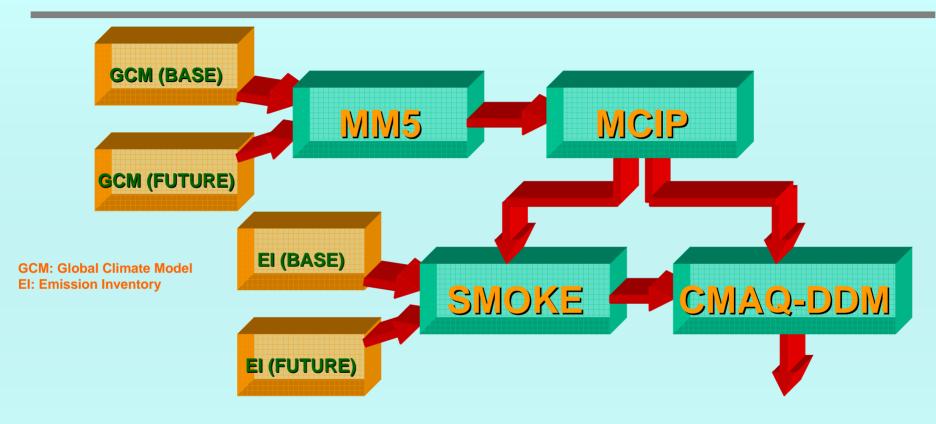
September 2005 Annual Models3/CMAQ User's Conference NC, USA

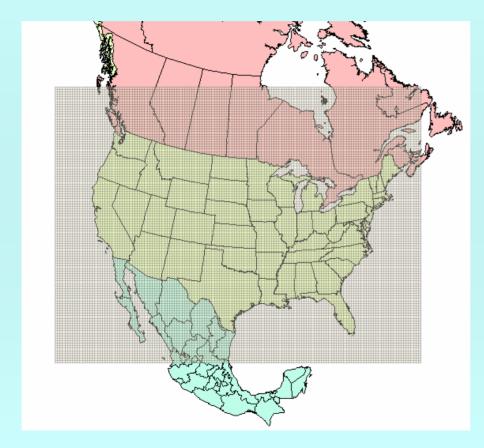

Issues


- Global climate change potentially impacts regional air quality
 - Increased temperatures, changes in circulation, rainfall, etc.
 - Impacts emissions
 - Biogenic
 - Anthropogenic
- Significant uncertainties in future climate
 - Similar uncertainties in impacts on air quality
- Question relevant to air quality management: How does climate change affect the "response" of air quality to emissions?
 - Assess the effectiveness of current emission control strategies and how they will be impacted by climate change
 - Consider uncertainty in future climate and emissions on the effectiveness of control strategies

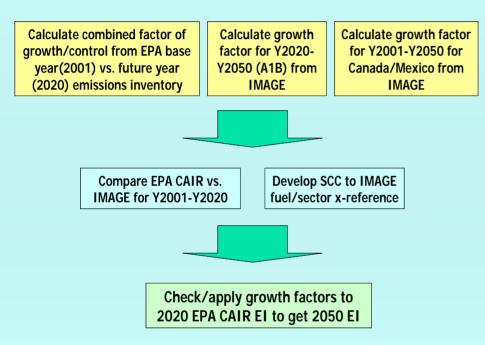
Objectives

- Assess the impacts of both direct (i.e. from climate change) and indirect (i.e. from emissions changes) effects on regional air quality
 - Emphasis given to the response of air quality to emissions, i.e. the "sensitivity" of pollutant concentrations to emissions
- Assess if climate change forcing has a potentially significant and probable impact on the direction and magnitude of current emissions controls being considered in the U.S. for improving air quality
 - O₃ and fine particulate matter (FPM)


21st-Century Climate Study (IPCC)

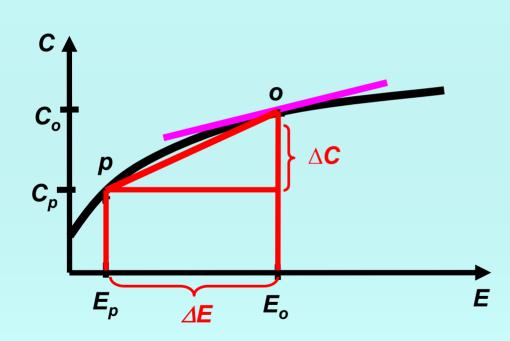

Source: IPCC (2001), Climate Change 2001: The Scientific Basis

Approach


- <u>2 Cases (summertime)</u>:
 - a) Control (or base): Jun., 2000-2002
 - b) Future: Jun., 2049-2051
- Climate-downscaled meteorological results by NASA's GISS GCM and MM5, based on Leung et al. (2005)

CMAQ Domain

- 147 x 111 grid domain
- 9 vertical layers
- 36-km grid size
- Continental US + Parts of CA & MX

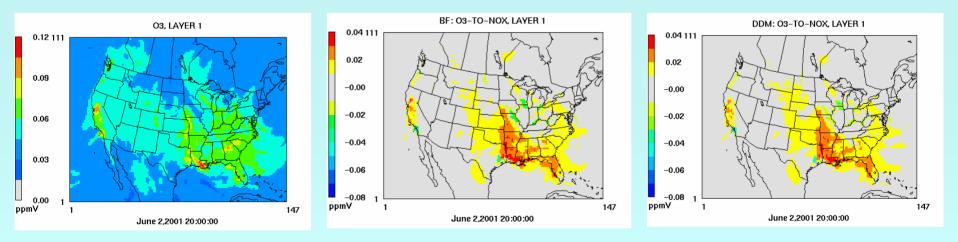

Paradigm of Future-El Development

<u>SRES A1B</u>: Future world of rapid economic growth and global population that peaks in mid-century and declines thereafter, rapid introduction of more efficient technologies, and balanced usage between fossil fuels and other energy sources

- 3/4 of El work completed
- Underway: Mobile-US, CA, and MX
- US:
 - 2001 → 2020 (EPA CAIR EI)
 - 2020 → 2050 (IMAGE w/ SRES A1B)
- CA & MX:
 - Adjusted to 2001 by GDP & pop.
 - 2001-2050 (using scaling factors from EGAS, GDP, pop., etc.) - Not conducted yet
- Land use:
 - BELD3 (held constant for future case)
- No future projection for geogenic and fire emissions
- MIMS spatial allocator with new EPA spatial surrogates

Sensitivity's Definitions

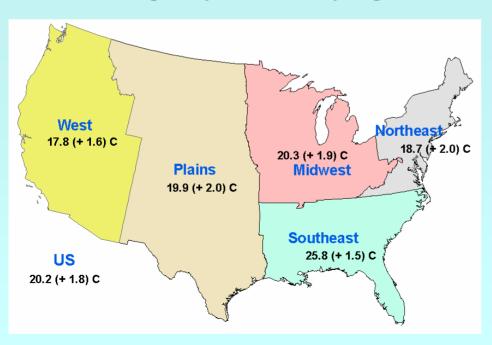
- In current context, Sensitivity (S) = Response of concentration (C) to change in emission (E)
- Brute Force (BF):
 1) S = △C / △E
- Decoupled Direct Method (DDM): With △ → 0, equivalent to
 2) S = ∂C / ∂E


Redefine by normalization 3) $\varepsilon = \Delta E / E$

Equivalent to 4) $S = \partial C / \partial \varepsilon$

By Eqs. 3-4, S and C have same unit

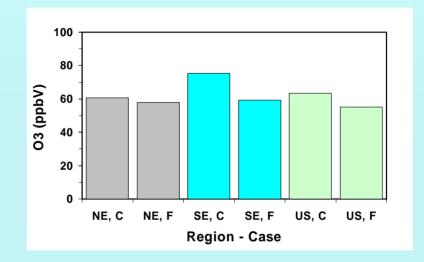
Sensitivity Calculation


- Sensitivity calculation: Useful analytical & application tool for AQM
- By DDM, sensitivity is numerically & directly solved
- DDM has been incorporated into several air quality models (e.g. CIT, URM, CAMx, and CMAQ)
- CMAQ-DDM: Based on Cohan et al. (2003) and Napelelok et al. (2005)

Cohan et al., 2003: 2nd Annual CMAS MODELS-3 User's Conference, NC, USA Napelenok et al., 2005: Annual PM Supersites Conference, GA, USA

Temperature and Emissions Changes between Control and Future Cases

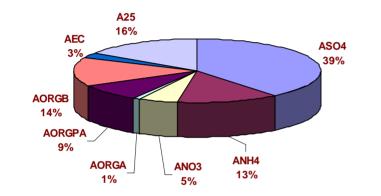
- <u>US regions:</u> WS (West)
 PL (Plains)
 MW (Midwest)
 NE (Northeast)
 SE (Southeast)
- Averaged by case and by region



Region	Emission	Change (%)
ws	NOX	-51.8
	SO2	-49.3
	NH3	+4.1
	VOC	+9.0
	VOC (B)	+19.0
	NOX	-41.1
	SO2	-67.1
PL	NH3	+2.3
	VOC	+16.2
	VOC (B)	+27.0
	NOX	-52.7
	SO2	-60.1
MW	NH3	+5.1
	VOC	+8.1
	VOC (B)	+28.9
	NOX	-65.1
	SO2	-66.6
NE	NH3	+9.9
	VOC	-0.72
	VOC (B)	+29.6
	NOX	-62.8
	SO2	-60.5
SE	NH3	+4.6
	VOC	+7.0
	VOC (B)	+15.0
	NOX	-54.1
US	SO2	-62.2
	NH3	+4.5
	VOC	+8.6
	VOC (B)	+21.4
B: Biogenic		

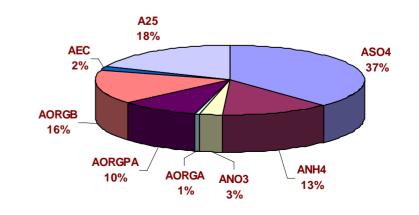
O3: Concentration & Sensitivity

Averaged by case and by region



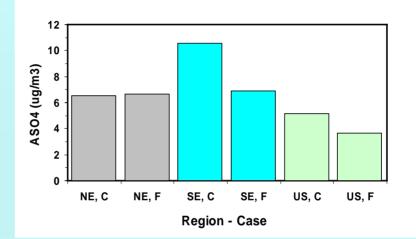
Region	Sensitivity*	Control	Future	Diff.
NE	O3 to NOX	11.1	17.3	6.2
	O3 to VOC	3.1	-2.0	-5.0
SE	O3 to NOX	24.0	21.7	-2.3
	O3 to VOC	0.5	-4.5	-5.0
US	O3 to NOX	15.3	15.1	-0.2
	O3 to VOC	1.4	-1.8	-3.2
*: ppbV				

Fine Particulate Matter (PM2.5)


US (Control Case)

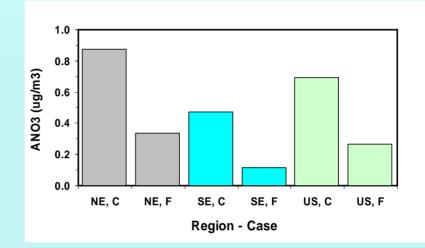
Each PM2.5 species = I-Mode + J-Mode

- Averaged by case and by region
- ASO4 & ANO3 discussed here


US (Future Case)

ASO4: Concentration & Sensitivity

- ASO4 = ASO4I + ASO4J
- Averaged by case and by region



Region	Sensitivity*	Control	Future	Diff.
NE	ASO4 to SO2	4.779	4.468	-0.311
	ASO4 to NOX	0.504	0.741	0.237
	ASO4 to NH3	0.040	0.123	0.083
SE	ASO4 to SO2	8.325	5.062	-3.262
	ASO4 to NOX	0.939	0.691	-0.247
	ASO4 to NH3	0.043	0.155	0.111
US	ASO4 to SO2	3.970	2.455	-1.515
	ASO4 to NOX	0.398	0.296	-0.102
	ASO4 to NH3	0.078	0.190	0.111
*: ug/m3				

ANO3: Concentration & Sensitivity

- ANO3 = ANO3I + ANO3J
- Averaged by case and by region

Region	Sensitivity*	Control	Future	Diff.
NE	ANO3 to SO2	-0.672	-0.358	0.313
	ANO3 to NOX	0.691	0.419	-0.272
	ANO3 to NH3	1.244	0.562	-0.681
SE	ANO3 to SO2	-0.547	-0.162	0.386
	ANO3 to NOX	0.591	0.162	-0.429
	ANO3 to NH3	0.802	0.243	-0.559
US	ANO3 to SO2	-0.546	-0.187	0.359
	ANO3 to NOX	0.707	0.367	-0.340
	ANO3 to NH3	0.901	0.306	-0.595
*: ug/m3				

Conclusions

- Sensitivity assessment:
 - Control and future cases (covering 6 one-month summer episodes)
 - Continental US (plus parts of CA & MX)
 - GISS-MM5/SMOKE/CMAQ-DDM
- Warmer climate around mid-century (+1.5-2.0 °C)
- NOX & SO2 emissions reduced significantly in future case (~50-60%)
- Increased biogenic VOC emissions in future case (~15-30%)
- Decreased O3 in all regions (up to ~20% in SE)
- Decreased ASO4 and ANO3 in NE, SE, and US
 - Exception: ASO4 in NE due to unchanged SO2 emissions of CA
- Sensitivity of O3 to emissions:
 - No significant differences found between control and future cases
 - In NE, relatively larger changes in sensitivity (but their magnitudes are still much less than those of concentration)
- Sensitivity of ASO4 and ANO3 to emissions:
 - ASO4 most (positively) sensitive to SO2
 - ANO3 negatively sensitive to SO2 but positively sensitive to NOX & NH3
 - For some, fair-to-large changes in sensitivity
- Response of O3 and FPM to emissions changed but not too significantly under combined influence of both climate and emissions changes

Future Work

- Examine and statistically evaluate climatology of meteorological variable of interest (particularly, temperature) and regional O3 & FPM levels (as discussed by Hogrefe et al., 2004)
- Complete El development work for US, CA, and MX
- Comparison: Direct (alone) and combined (direct + indirect) effects
- Extended simulation and analysis: Annual simulations + More FPM species & sensitivity variables
- Large uncertainties exist for climate change prediction:
 - Account for and incorporate uncertainty information of climate change into meteorological modeling
 - Plan: Choose 5 modeling realizations (approx.) representing 5 different climate conditions (i.e. -extreme, -fair, typical, +fair, and +extreme)
 - Suggested by multi-dimensional cumulative density functions from MIT's ISGM GCM results (Webster et al., 2003)

Acknowledgements

Dr. Yongtao Hu, Dr. Efthimios Tagaris, and Kao-Jen Liao (GaTech) for assistance
US EPA under STAR grant No. R830960