Utilizing @MAQP Forcess A Aalysisishtan Attemptstandhtlerstanactseolmpiactseof Climatea Opange OnaOd and 25M2 5 C. Hogrefe¹, B. Lynn², C. Rosenzweig³, R. Goldberg³, K. Civerolo⁴, J.-Y. Ku⁴, J. Rosenthal², K. Knowlton², and P.L. Kinney² ¹Atmospheric Sciences Research Center, University at Albany ²Columbia University ³NASA-Goddard Institute for Space Studies ⁴New York State Department of Environmental Conservation Models-3 Users' Workshop, September 26-28, 2005 This project was supported by the U.S. **Environmental Protection Agency under STAR** New York Climate & Health

grant R-82873301

Proiect

Previously shown at CMAS ...

 CMAQ simulates an increase in average (~3-5 ppb) and 4th-highest (~5-7 ppb) summertime daily maximum 8-hr ozone concentrations for future decades as a result of climate change alone

And now the Continuation:

- Include simulation of aerosols
- Utilize regional climate simulations from two configurations of MM5
- Include process analysis

GCM/MM5/CMAQ Model Setup

- GISS coupled global ocean/atmosphere model driven by IPCC "A2" greenhouse gas scenario
- MM5 was run on 2 nested domains of 108km and 36km over the U.S. with two cumulus parameterizations:
 - Betts-Miller (MM5-BM)
 - Grell (MM5-G)
- Simulations periods :

June – August 1993-1997 June – August 2053-2057

- 1996 U.S. Emissions processed by SMOKE
- BEIS2 for biogenic emissions and Mobile5b for mobile source emissions
- CMAQ 4.4 was run at 36km to simulate ozone
- CB-IV mechanism, aerosols, process analysis
- Note: No coupling to global chemistry model, no feedback from aerosols to climate simulations

Effect of MM5 Cumulus Parameterization on Regional Climate Fields

Summertime Average Temperatures Simulated by MM5-BM (left) and MM5-G (right) for the 1990s (top), 2050s (center), and 2050s-1990s (bottom)

Changes in Summertime Average Species Concentrations, 2050s – 1990s, MM5-BM/CMAQ (left), MM5-G/CMAQ (right)

Changes in Summertime Average PM_{2.5} Species Between the 2050s and 1990s for both the MM5-BM / CMAQ and MM5-G / CMAQ Simulations

- Increase in total $PM_{2.5}$, SO_4 , EC, and other primary particles, decreases in NO_3 and OC
- Direction of change consistent for both MM5 regional climate scenarios

 Could one parameterize these changes in concentration fields based on the changes in regional climate parameters?

Changes in Summertime Average Ozone, HO_x and Meteorology (2050s – 1990s, MM5-BM / CMAQ)

No strong relationship between patterns of changes in meteorological parameters, summertime average O concentrations, and summertime average HO, concentrations is evident

How Are Changes In O₃ Related To Changes in Climate Parameters?

MM5-BM / CMAQ

MM5-G / CMAQ

Little relationship between changes in individual meteorological parameters at a given location and average O₃ changes at the same location for either MM5-BM / CMAQ or MM5-G / CMAQ (2050 A2 scenario)

Correlations Between the Spatial Patterns of Changes in Summertime Average O₃ and Meteorology (MM5-BM)

	∆CloudFr	∆PBL	∆WaVap	ΔΤ	∆Windsp
ΔCloudFr		-0.06	0.01	0.06	0.33
ΔPBL			0.42	0.83	0.47
∆WaVap				0.25	0.44
ΔΤ					0.38
ΔCO	0.12	0.09	0.60	0.08	0.13
ΔO_3	-0.10	0.04	0.48	0.01	0.07
ΔEC	-0.12	-0.32	0.00	-0.35	-0.35
ΔNO_3	0.10	0.01	-0.19	0.00	0.03
ΔOC	-0.08	-0.63	-0.52	-0.53	-0.49
ΔSO_4	0.20	-0.21	0.10	-0.28	-0.02

Process Analysis

- Goal: Keep track of the contributions of different science processes to the changes in species concentrations
- In this analysis, Integrated Process Rates (IPR) were used and four processes were defined:
 - Vertical: Advection + diffusion + mass adjustment + dry deposition (+ emissions)
 - Horizontal: advection + diffusion
 - Clouds (includes aqueous chemistry, scavenging, cloud vertical mixing)
 - Chemistry/Aerosol Module:
- Analysis is presented for the first model layer and for the MM5-BM / CMAQ simulations only

Temporal and Spatial Patterns of O₃ IPR Factors for the 1990s

Summertime Average of IPR Terms

Average Diurnal Cycles of IPR Terms

Vertical

Clouds

Chemistry

Spatially and Temporally Averaged O₃ Process Rates for the 1990s and 2050s

 Increase in the strength of the net chemical production rates for the future climate scenario

• Increase in the net loss due to vertical processes

Spatially and Temporally Averaged EC Process Rates for the 1990s and 2050s

- For EC as a primary aerosol, the vertical term (which includes emissions) is the largest net source while cloud processes are the largest net sink in the surface level
- Minor changes in strength between the horizontal and vertical components are seen between the two decades

Changes in Summertime Average O₃(left) and IPR Categories (center, right) 2050s – 1990s, MM5-BM / CMAQ

Correlations Between Spatial Patterns of Changes

	ΔCO	ΔΟ ₃	ΔΕС	ΔSO ₄
∆IPR(EC, Clouds)	-0.19	-0.01	0.09	-0.02
∆IPR(EC, Horizontal)	0.17	0.06	0.17	0.08
∆IPR(EC, Vertical)	-0.11	-0.10	-0.05	-0.09
∆IPR(CO, Chemistry)	0.69	0.49	0.00	-0.02
∆IPR(CO, Clouds)	-0.26	-0.19	-0.18	-0.16
∆IPR(CO , Horizontal)	0.19	0.08	0.08	0.15
∆IPR(CO, Vertical)	-0.17	-0.11	0.05	-0.14
Δ IPR(O ₃ , Chemistry)	0.57	0.70	0.37	0.31
ΔIPR(O ₃ , Clouds)	0.09	-0.05	0.01	0.35
Δ IPR(O ₃ , Horizontal)	0.10	-0.03	-0.10	0.09
ΔIPR(O ₃ , Vertical)	-0.24	-0.21	-0.01	-0.24

Correlations Between Spatial Patterns of Changes

	∆CloudFr	APBL	∆WaVap	ΔΤ	∆Windsp
ΔCΟ	0.12	0.09	0.60	0.08	0.13
ΔΕС	-0.12	-0.32	0.00	-0.35	-0.35
∆NO ₃	0.10	0.01	-0.19	0.00	0.03
∆SO ₄	0.20	-0.21	0.10	-0.28	-0.02
∆IPR(EC, Clouds)	-0.29	0.02	-0.27	0.02	-0.31
∆IPR(EC, Horizontal)	0.19	0.07	0.11	0.05	0.14
∆IPR(EC, Vertical)	-0.20	-0.01	-0.14	0.05	-0.11
Δ IPR(O ₃ , Chemistry)	-0.17	0.05	0.37	-0.02	-0.04
∆IPR(O ₃ , Clouds)	0.39	-0.17	0.04	-0.26	0.21
Δ IPR(O ₃ , Horizontal)	0.34	0.13	0.00	0.14	0.09
Δ IPR(O ₃ , Vertical)	-0.19	0.03	-0.25	0.10	-0.08

Summary

- CMAQ simulations with regional climate change under the IPCC A2 scenario for the 2050s shows an increase of up to $1 \mu g/m^3$ in summertime average total PM_{2.5} concentrations, mostly driven by increases in sulfate
 - Decreases in the volatile species nitrate and organic carbon are more than offset by increases in sulfate and primary PM_{2.5} species
 - The directionality of changes is consistent for two different MM5 configurations
 - \Rightarrow Performing regional climate ensemble modeling studies could help to quantify the uncertainty around simulated pollutant changes as a result of climate change
- Process analysis: strongest link between climate change and changes in pollutant concentrations is through chemical production rates for reactive gas-phase species (via water vapor / radical chemistry?)
- But: Even the strongest linear regression associations explain less than half of the concentration changes simulated by CMAQ
- This implies that the simulated changes in pollutant concentrations stemming from climate change are the result of a complex interaction between changes in transport, mixing and chemistry that cannot be parameterized by spatially uniform linear regression relationships
- Therefore, full-science photochemical modeling systems such as CMAQ are the tool of choice for quantitatively studying the impact of climate change on regional-scale air pollution.
- Need to include global chemistry models and aerosol/climate feedback