CHANGES TO THE BIOGENIC EMISSIONS INVENTORY SYSTEM VERSION 3 (BEIS3)

Donna Schwede, George Pouliot, Tom Pierce
Atmospheric Sciences Modeling Division
Air Resources Laboratory, NOAA
In partnership with the National Exposure Research Laboratory, USEPA
BEIS3 Emissions Model

\[Emission = [\varepsilon][\gamma_P \gamma_T][\rho] \]

= Standardized emission factor
\((30 \degree C; \text{PAR} 1000 \text{ mol m}^{-2} \text{ s}^{-1})\)

\(\gamma_P\) = Light adjustment factor

\(\gamma_T\) = Temperature adjustment factor

\(\rho\) = Foliar density
BEIS3 Emissions Model

\[Emission = [\varepsilon][\gamma_P \gamma_T][\rho] \]

- \(\varepsilon \) = Standardized emission factor

 (30°C; PAR 1000 \(\mu \)mol m\(^{-2}\) s\(^{-1}\))

- \(\gamma_P \) = Light adjustment factor

- \(\gamma_T \) = Temperature adjustment factor

- \(\rho \) = Foliar density
Standardized Emission Factors - Isoprene

<table>
<thead>
<tr>
<th></th>
<th>BEIS3.12 (g C km(^{-2}) h(^{-1}))</th>
<th>BEIS3.13 (g C km(^{-2}) h(^{-1}))</th>
<th>Net Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spruce</td>
<td>10,500</td>
<td>5,250</td>
<td>-50%</td>
</tr>
<tr>
<td>USGS Coniferous</td>
<td>11,383</td>
<td>7,918</td>
<td>-19%</td>
</tr>
<tr>
<td>USGS Deciduous</td>
<td>8,232</td>
<td>6,707</td>
<td>-30%</td>
</tr>
</tbody>
</table>

Effect of Isoprene Emission Factor Change

Standardized Isoprene Emission Flux

BEIS3.13 – BEIS3.12

Min=-4.5e+06 at (103.95), Max= 0.0e+00 at (1.1)
Standardized Emission Factors - Monoterpene

<table>
<thead>
<tr>
<th></th>
<th>BEIS3.12 (g C km(^{-2}) h(^{-1}))</th>
<th>BEIS3.13 (g C km(^{-2}) h(^{-1}))</th>
<th>Net Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Fir</td>
<td>1064</td>
<td>585</td>
<td>-72%</td>
</tr>
<tr>
<td>Hemlock</td>
<td>126</td>
<td>665</td>
<td>+541%</td>
</tr>
</tbody>
</table>

Effect on Monoterpene Emission Factor Change

Standardized Alpha-Pinene Emission Flux

Min = -722004 at (21,78), Max = 10194 at (131,74)
Effect of Temperature

• Ambient temperature used as a surrogate for leaf temperature
• MCIP version 3 provides both 2m and 10m temperatures
• Choice of temperature height currently an input to BEIS3.13
• Different heights may be appropriate for different areas and biogenic emissions processes
Effect of Temperature

Domain Total Emission Flux

- Isoprene - 2 m temp.
- Isoprene - 10 m temp.
- Monoterpene 2 m temp.
- Monoterpene 10 m temp.

Emission flux (kg C h⁻¹)

Julian Day
Effects of Radiation – Radiation Model

- Bug fix (clnew.for)
- Empirical parameterization used to separate radiation into components (direct, diffuse, PAR, IR)
 - BEIS - Weis and Norman (1985)
 - GLOBEIS – Spitters et al (1986) w/ mods
Comparison of Direct and Diffuse Radiation

Bondville 2004 SURFRAD 3-Minute Data
Comparison of PAR Values

Bondville 2004 - SURFRAD Hourly Averaged Data

Normalized Mean Bias
BEIS = 7.5%
GLOBEIS = 9.7%
Effects of Radiation – Adjustment Factor

\[\gamma_P = \frac{\alpha C_L Q}{(1 + \alpha^2 Q^2)^{0.5}} \]

 - \(\alpha = 0.0027; C_L = 1.066 \)
 - \(\alpha = 0.001 + 0.0085 \times \text{LAI} \)
 - \(C_L = 1.42 \times \text{exp}(-0.3 \times \text{LAI}) \)
 - LAI = cumulative LAI
 - BEIS assumes
 - LAI = 0 = Top of canopy

Diurnal variation of PAR adjustment factor using data from the Bondville, IL SURFRAD station for July 2004.
CMAQ Model Results

- CMAQ v4.5 (pre-release build)
- CB4 chemical mechanism
- July 2001; RPO North American Domain; 36 km grid size
- 2 m temperature from MCIP for BEIS3.13
Effect on Ozone Concentration

Layer 1 Ozone Concentration Difference

CMAQ with BEIS3.13 emissions – CMAQ with BEIS3.12 emissions

July 6, 2001 1:00:00
Min = -17.055 at (43,64), Max = 1.959 at (84,34)
Effect on Organic Carbon

Organic Carbon Concentration Difference

CMAQ with BEIS3.13 emissions – CMAQ with BEIS3.12 emissions

July 6, 2001 1:00:00
Min = -0.580 at (19,72), Max = 0.413 at (142,90)
CMAQ Performance Statistics
IMPROVE and AIRS Data – July 2001

<table>
<thead>
<tr>
<th></th>
<th>BEIS3.12</th>
<th>BEIS3.13</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 hr O₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMSE (ppmV)</td>
<td>0.013</td>
<td>0.013</td>
</tr>
<tr>
<td>NMB (%)</td>
<td>16.71</td>
<td>14.20</td>
</tr>
<tr>
<td>NME (%)</td>
<td>37.78</td>
<td>36.97</td>
</tr>
<tr>
<td>PM2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMSE (ug/m³)</td>
<td>5.42</td>
<td>5.34</td>
</tr>
<tr>
<td>NMB (%)</td>
<td>-35.70</td>
<td>-37.65</td>
</tr>
<tr>
<td>NME (%)</td>
<td>47.80</td>
<td>46.89</td>
</tr>
<tr>
<td>Organic carbon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMSE (ug/m³)</td>
<td>1.25</td>
<td>1.07</td>
</tr>
<tr>
<td>NMB (%)</td>
<td>10.35</td>
<td>0.38</td>
</tr>
<tr>
<td>NME (%)</td>
<td>72.65</td>
<td>63.51</td>
</tr>
</tbody>
</table>
Summary

• A few standardized emission factors for isoprene and monoterpene have been changed in BEIS3.13
• The coefficients in the equation used to calculate the light adjustment factor have been changed
• When compared to emissions from BEIS3.12, domain total isoprene emissions for July 2001 from BEIS3.13 are about 35% lower and monoterpene emissions are about 2% lower
• Using BEIS3.13 produced a notable improvement in CMAQ’s model performance for organic carbon
Future Work

- The Biogenic Emissions Landuse Database (BELD) will be upgraded to BELD3.2 using more recent agriculture data.
- New temporal corrections for isoprene:
 - Introduce a “green-up” period in spring (to transition from winter to summer factors for deciduous trees).
 - Introduce a senescence period in autumn (to transition from summer to winter factors for deciduous trees).
 - Incorporate a correction function that considers 8-hour average temperature and 4-hour average PAR (all tree species).
Acknowledgements

NOAA – Shawn Roselle, Alfreida Torian
EPA – Chris Geron
CSC – Lucille Bender, Alan Beidler

Disclaimer

The research presented here was performed under the Memorandum of Understanding between the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Commerce’s National Oceanic and Atmospheric Administration (NOAA) and under agreement number DW13921548. This work constitutes a contribution to the NOAA Air Quality Program. Although it has been reviewed by EPA and NOAA and approved for publication, it does not necessarily reflect their policies or views.