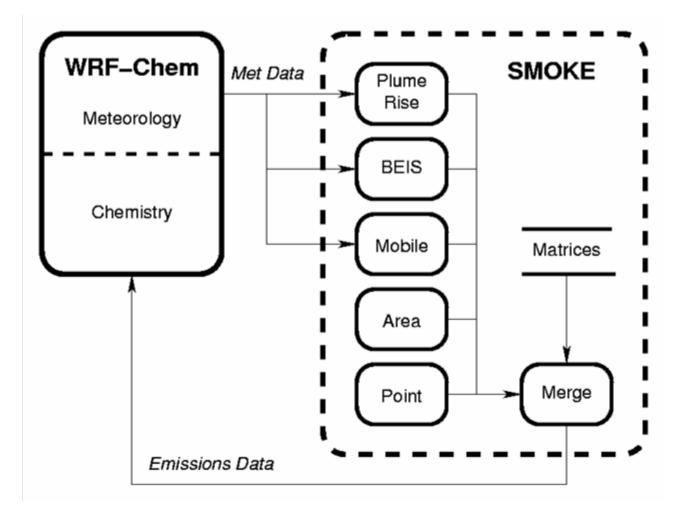
SMOKE-RT for WRF-Chem and Air Quality Forecasting

Carlie J. Coats, Jr. Baron Advanced Meteorological Systems, LLC Raleigh, NC

WRF and WRF-Chem:

- Next-generation mesoscale modeling system
 - Targets 1-10 KM resolution grids
 - Modular science processes
 - Integrated atmospheric chemistry option (work in progress... needs emissions)
 - HPCC computing framework: OpenMP shared memory + MPI distributed memory hybrid
- Designated successor to MM5, ETA, other models
 - Sponsored by NOAA, EPA, Air Force, Navy, others
- <u>http://wrf-model.org/index.php</u>
- WRF is grid-oriented model; emissions is geopolitical inventory problem: **structure mismatch**


WRF: Layered Model Structure

- Driver Layer: manages I/O, communication, nests, state data, decomposition of the grid into distributed-memory parallel "patches" and shared-memory parallel "tiles"
- Mediation Layer: interface between Driver and Model layers; contains solver
- *Model Layer:* computational routines for atmospheric processes, called on "tiles" (scientists work here...)
- *Registry:* table that describes the desired model to build
 - Variables, science processes, data sets, and how they all interact
 - Build process customizes the source code according to *Registry*: variables, science-modules, data sets

SMOKE and WRF-Chem: Idea

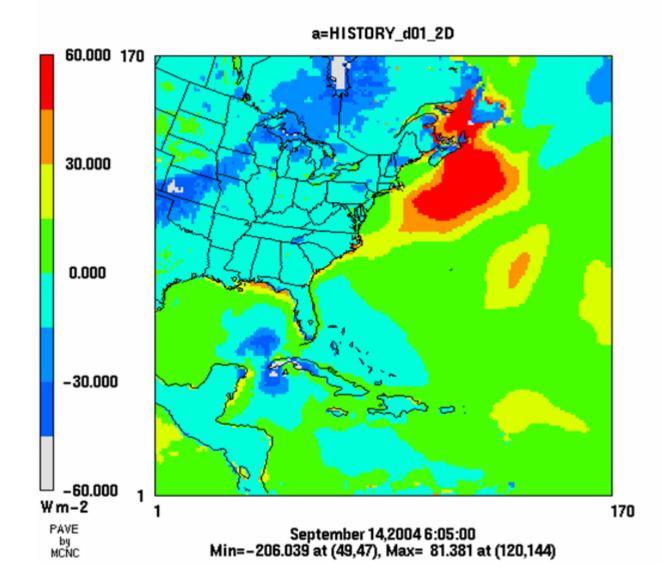
- Use WRF "external package" facility to put Models-3 I/O API into WRF
 - Fits in with official "layered-model" architecture
 - Turns out to have "complexities" due to WRF design
- Use I/O API Coupling Mode for "cooperating process" WRF-Chem/SMOKE implementation
 - Met part of WRF-Chem provides met data to SMOKE
 - SMOKE provides met-modulated emissions data to chem part of WRF-Chem
 - "Just works" for both in-line and off-line modeling
- http://www.baronams.com/projects/wrfchem/

SMOKE and WRF-Chem -- Concept

Models-3 I/O API (M3IO) and WRF(-Chem)

- Fits into WRF architectural design:
 - Driver layer interfaces to I/O through "wrappers"
 - READ, WRITE routines look very much like **READ3**, WRITE3
 - *Registry*-driven build system generates I/O calls
- Ostensibly, three easy sub-tasks:
 - Translate date&time/map-projection/grid conventions
 - Build wrappers
 - Additions to Registry, Makefile
- . Reality is quite different
 - Failure in the underlying WRF systems analysis made this effort much harder than it should have been

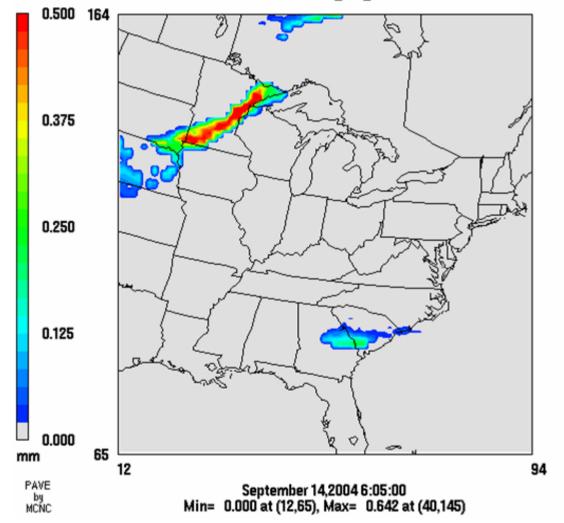
M3IO and WRF (cont'd)


- First pass, learning the architecture: *about a month*
- READ, WRITE, CLOSE were easy: *about two hours*
- Date&Time/Map-projection/Grid conventions:
 - **About three weeks** (changes from WRFv1 to WRFv2)
 - WRF grid conventions are inadequately precise (and WRF framework makes this difficult to fix)
- File-creation: over 8 man-months!
 - PROBLEM: WRF has no real notion of "data set definition"
 - WRF data set creation uses *eight levels of subroutine calls* (some indirect—passing subroutines as arguments)
 - File description embedded in *Registry*-generated code (version-specific? ...subject to change? *Yes, to both!*)

M3IO External package for WRF

- Access to all M3IO modes, tools
 - *NetCDF* file mode, *native-binary* file mode, *PVM*-based coupling mode
 - PAVE, *m3tools* package, more...
- Fits (almost) cleanly into WRF build system:
 - ext_m3io.F90: wrapper code, as specified by WRF
 - module_m3io.f90: state management for M3IO
 - m3io_util.f90: time-manipulation, array-transpose, etc.
 - m3io_grid.f90: interface for M3IO-required metadata not provided by standard WRF framework
 - Registry mods, other minor mods.

WRF HFX in PAVE


Layer 1 HFXa

WRF Convective Precip in PAVE

Layer 1 RAINCa

a=HISTORY_d01_2D

SMOKE and WRF-Chem: Problems

- SMOKE needs to be a *"time stepped model"* with the following changes:
 - Do all work for one time step before going on to next time step (get rid of "pollutant groups"!!!)
 - Must work with sub-hourly meteorology input files
 - Must be able to generate sub-hourly emissions output files
 - Don't override the user's run specifications! This is necessary for coupled-model applications (or for general operational integrity)

SMOKE and WRF-Chem

- . Parallelization and Optimization
 - Unrealistic to expect a single-processor SMOKE to cooperate effectively with a WRF model hosted on a system with hundreds of processors
 - Simplified, modular program drivers required in order to do parallelization and optimization

SMOKE and WRF-Chem

. Software Engineering:

- Build system must be compatible with I/O API
- Should not make private (and out-of-date) copies of I/O API routines and data structures, nor of external libraries
- Encapsulation: needs modular/OO (re-)design
- Referential integrity checks: full primary key should exist within inventory files and should be checked
- Should check failure status for all library calls
- SMOKE should be *re-structured* so that the code is *comprehensible* and *maintainable*

SMOKE-RT for WRF and AQ Forecasting

- New versions of meteorology-modulated time stepped emissions programs
 - File-compatible with older versions
 - Parallelization; improved modularity and efficiency
 - LAYPOINT, TMPBEIS, TMPMOBIL
- New, more powerful **EMISMERGE** program
 - Multi-inventory, multi-category merge
 - Single-stage, with improved efficiency
 - Merges for multi-inventory lists of each type

LAYPOINT

- New UI and driver layers
 - Arbitrary user-selected time step (requries compatible metinput time step)
 - Does not override user's run-specifications
 - Uses TA,QV,P,Z,U,V from met model (compatible with both MM5, WRF(-Chem)) with configurable names
 - OpenMP parallelization, substantial optimization
- Same plume-rise algorithms
- Stack-height adjustment for sub-gridscale terrain
 - Hills and valleys are "part of the stack"

TMPBEIS

- New UI and driver layers
 - Arbitrary user-selected time step
 - Does not override user's run-specifications
 - Uses TA2,QV,GSW from met model (compatible with both MM5, WRF(-Chem))
 - OpenMP parallelization
 - Optional lapse adjustment to compensate for grid scale met-model terrain height error
- Same BEIS3 algorithms, file compatible with existing NORMBEIS3

TMPMOBIL

- Replaces mobile-source use of **TEMPORAL**
- New UI and driver layers, module structure
 - Arbitrary user-selected time step (up to one hour)
 - Does not override user's run-specifications
 - Uses **TA, TAMAX, TAMIN** from met model (compatible with both MM5, WRF(-Chem))
 - OpenMP parallelization, optimization (4.1x faster for Eastof-Rockies 45KM test case on SGI Origin)
 - Optional lapse correction for terrain height error
- *Mobile5b* for current version (future *Mobile6-lite?*)

EMISMRG

- Single-stage multi-inventory merge
 - Replaces **SMKMERGE** and **MERGEGRID** programs
 - Takes (possibly-empty) lists of area-style, mobile-style, BEIS-style, point-style file-sets and date/time specs
 - Resolves hourly, sub-hourly time stepping issues
 - New "standard-week" treatment
 - Optional 3-D sub-grid scale treatment of area, biogenic, mobile emissions using layered terrain-penetration fractions: see poster session
- OpenMP parallel, major efficiency improvements
- Does not override user run-specifications

SMOKE Status

- LAYPOINT, TMPBEIS, TMPMOBIL, EMISMRG complete:
 - Component testing and validation done
 - Integrated system, AQM testing in progress
 - Mobile6 treatment for future?
- Work took longer than anticipated:
 - "Vanilla" темрокац absurdly complicated—three manmonths for what should have been a two-week task
 - M3IO-in-WRF treatment even worse (over eight man-months wasted due to WRF framework mis-design)
- Optional sub-grid scale terrain-error corrections: funded by State of Alabama

Conclusions

- M3IO now works in WRF: some parts easy, data set creation hard.
- M3IO in WRF enables on-line WRF-Chem/SMOKE and off-line WRF/SMOKE/CMAQ.
- WRF-Chem/SMOKE required SMOKE re-engineering; critical parts have been completed.
- Operational use of WRF-Chem/SMOKE requires greatly enhanced SMOKE performance.
- New SMOKE components offer better modularity and comprehensibility, performance, parallelization.