CMAQ Size Distributions in Pacific Northwest with Ternary Nucleation

1-5 NE 45TH S

Robert Elleman¹, Dave Covert¹, Cliff Mass¹, Jack Chen²

¹ Department of Atmospheric Sciences, University of Washington, USA ² Laboratory for Atmospheric Research, Washington State University, USA

Overview

• Goal

- More accurately model aerosol size distribution.

- CMAQ v4.4 (September 2004)
 - Aerosol treated as 3 log-normal modes
 - Kulmala (1998) binary H₂SO₄+H₂O nucleation
- Poorly reproduces number concentrations despite otherwise average performance
- Ternary Nucleation for Pacific Northwest
 - Test no nucleation, Kulmala binary, and Napari ternary nucleation
 - Compare to observations from field campaigns

CMAQ 4 km Domain

CMAQ Simulation

- 4 km horizontal resolution
- 22 levels -- lowest layer is ~30 meters
- 4 day spin-up
 - 00 UTC 08/24 00 UTC 08/26 twice
- 3 day simulation
 - 00 UTC 08/26 00 UTC 08/29, 2001

Observational Datasets PNW 2001 Pacific 2001

From: http://www.pnl.gov/pnw2001/

Number Underprediction

Pacific Standard Time = UTC - 8

Ternary Nucleation

- More current binary schemes produce more particles
- Ammonia is important component for sulfate-poor regions
- Enough NH₃ for ternary nucleation to be significant

Ternary Parameterization

• Napari et al.

Napari, I., M. Noppel, H. Vehkamäki, and M. Kulmala, 2002: Parameterization of ternary nucleation rates for H₂SO₄-NH₃-H₂O vapors. *J. Geophys. Res*, 107 (D19), 4381, doi:10.1029/2002JD002132.

- Valid [NH₃]_g : 0.1 100 ppt
- Nucleation rate strong function of :

– Input [NH₃]_g, Temperature, Input [H₂SO₄]_g

Number Concentrations

- No difference between binary nucleation and no nucleation
- Ternary nucleation overpredicts daytime urban number concentrations by about 3 orders of magnitude
- Ternary nucleation produces 5% more PM_{2.5} than binary nucleation

Spatial Distribution of Number Concentration

Size Distributions

Binary Nucleation

Ternary Nucleation

- Nucleation mode is overpredicted with ternary nucleation.
- Aitken mode is modeled better with ternary nucleation.
- No change in accumulation mode performance.

Ternary Shifts i-mode to Small Sizes

What is Going On?

Nucleation mode physics

- Not captured with current 3-mode model
- Near-molecular dynamics and growth not accounted for

• Ternary Nucleation theory

- Effect of ammonium bisulfate (Anttila et al., in press)
- Not a solved problem

Conclusions

- CMAQ v4.4 binary nucleation produces very few particles in this simulation
- Ternary nucleation
 - Produces urban concentrations in the millions instead of tens of thousands
 - Shifts the i-mode to 1-2 nm
 - Increases $PM_{2.5}$ by ~ 5%
- Highlights importance of the "h" mode.
- Nucleation theory is still incomplete

