

Roadmap for Development of CMAQ-MADRID

Eladio M. Knipping 4th Annual CMAS Models-3 User's Conference Chapel Hill, NC September 26, 2005

CMAQ-MADRID Development Group

- Atmospheric and Environmental Research: Principal Developers
 - Christian Seigneur, Prakash Karamchandani, Kristen Lohman, Betty Pun, Krish Vijayaraghavan

Principal Academic Research Groups

- John Seinfeld, California Institute of Technology
- James Pankow, Oregon Health & Science Institute
- Robert Griffin, University of New Hampshire
- Yang Zhang, North Carolina State University
- Principal Collaborators
 - Titan Corporation: Ian Sykes, Biswanath Chowdhury
- EPRI Research Managers
 - Alan Hansen, Naresh Kumar, Leonard Levin
- Additional Support
 - California Air Resources Board, U.S. Department of Defense, U.S. Environmental Protection Agency...

... And Our Newest Member

Major Components of CMAQ-MADRID (1/2)

- MADRID_{1/2}: Model of Aerosol Dynamics, Reaction, Ionization and Dissolution
 - State-of-the-art PM module developed by AER and Caltech in collaboration with other academic research groups
 - Sectional aerosol treatment (2 or more bins)
 - Incorporates latest developments in organic/inorganic aerosol research
 - MADRID₁ option utilizes Pankow-Odum-Griffin partitioning model for secondary organic aerosol formation
 - MADRID₂ option utilizes Caltech Atmospheric Chemistry Mechanism (CACM) and Multiple Phase Model for Partitioning of Organics (MPMPO)

Major Components of CMAQ-MADRID (2/2)

• APT_{G/PM}: Advanced Plume Treatment

- Plume-in-grid module for accurate treatment of elevated point sources
- Based on the Second Order Closure Integrated Puff Model with Chemistry (SCICHEM)
- Gas-phase chemistry or gas/particle chemistry options
- PM module consistent with both EPA PM and MADRID PM modules

• Hg^{TEAM}: Mercury chemistry

- Detailed model of gas-phase and aqueous-phase mercury chemistry
- Based on the Trace Elements Analysis Model (TEAM)
- Currently available for use with CMAQ-MADRID grid model
- Incorporation of Hg chemistry into additional configurations, including both APT PM configurations

Main Configurations of "CMAQ-MADRID"

Configuration Name	PM Module	ΑΡΤ	Нg ^{теам}
CMAQ (Host)			
CMAQ-APT _G	×	✓ (gas only)	×
CMAQ-Hg ^{TEAM}	EPA	×	\checkmark
CMAQ-APT _{PM}	EPA	✓	×
СМАQ-АРТ _{РМ} -Нg ^{теам}	EPA	✓	\checkmark
CMAQ-MADRID	MADRID ₁	×	×
CMAQ-MADRID-APT _{PM}		✓	×
CMAQ-MADRID-Hg ^{TEAM}	MADRID ₁	×	\checkmark
CMAQ-MADRID-APT _{PM} -Hg ^{TEAM}	MADRID	✓	~

Current Development of MADRID Modules

- 1. Active Development of MADRID Module
 - Abridged SOA Module
 - New SOA Species
 - RH Effect on SOA Formation
 - Computational Considerations
- 2. Acid Catalyzed SOA and "Oligomer" Formation
 - Experimental Studies
 - Theoretical Studies
 - Ambient Studies
- 3. Research & Development of MADRID Module
 - Thermodynamics
 - Extended UNIFAC/UNIQUAC
 - Future Challenges

Active Development of MADRID Module

Standard Oxidative Route to SOA formation

Predicting the formation of secondary organic particulate matter in the atmosphere requires **an understanding of all relevant reaction products and pathways**

Updating & Streamlining CMAQ-MADRID

- Streamlining SOA Mechanism in CMAQ-MADRID
 - Original SOA formulation:
 - 2 anthropogenic SOA precursors, 12 biogenic SOA precursors
 - 38×*n* condensable surrogate products (*n* = *number of sections*)
 - Abridged SOA formulation:
 - 2 anthropogenic SOA precursors, 6 biogenic SOA precursors
 - 20×*n* condensable surrogate products
 - Improvement in simulation time and storage requirements

Effects of RH on SOA Formation

- MADRID (or any PM model) does not consider RH effects on organic PM formation (20 hypothetical products in the abbreviated MADRID have no assigned chemical structures);
- Roadmap for incorporating RH effects:
 - 1. For each product, assign a probable carbon number and chemical functionality based on:
 - a) VOC precursor;
 - b) reaction; and
 - c) presumed volatility from the K_p value of the (α , K_p) pair.
 - 2. Develop an expression for the activity coefficient ζ for each organic compound that is a function of PM composition, including water content.
 - 3. Repeat (2) for water.
 - 4. Conduct RH-dependent model runs for total PM formed (organics + H_2O).

Preparation of Emission Inputs for Aerosol Precursors: Long-Chain Alkanes and PAHs

- (α , K_{p}) pairs have been developed for long-chain alkanes and PAHs
- Use SMOKE to process emissions
- Create new GSPRO file with PAH and long-chain alkanes as model classes
 - PAH class includes biphenyl, nephalene, fluoranthene, phenanthrene, anthracene, etc.
 - Long-chain alkane class includes straight chained or branched alkanes with 12 or more carbons
- Optional step for reactivity scaling: scale all alkane species based on RADM emissions

Computational Aspects

- Updating to EPA CMAQ-4.5
- Parallelization of all code configurations to provide computationally efficient platform
- Updated User's Guide and Sample Applications
- Model Evaluation in Peer-Reviewed Literature

Acid Catalyzed Formation of Secondary Organic Aerosol

Heterogeneous Atmospheric Aerosol Production by Acid-Catalyzed Particle-Phase Reactions

REPORTS

- 9. T. Bachels, R. Schafer, H. J. Ganthereck, Also, Rev. I. Baltari, K. Schner, N. J. Carteletter, Phys. Rev. Lett. 84, 4980 (2000).
 I. Q. Yang, A. E. DePrinto, J. Catol. 140, 223 (1994).
 F. Raletto, R. Fernando, A. Roturalii, F. Martalenti, C.
- 11.1.E. Baletto, R. Farranta, A., Fotznall, I., Merzakerti, C., Methad, C., Kenn, Piar, Y. K. 2006. (2020). 12. Bacama the only closure of freedom of the metal atoms in the closure are vehicles, the astropic contributions for the message and multi-and office way. Killow will charter east. This, by 1.4 and office ways that will after easting and the straight of the metage are used and metage that the straight of the table redge-redge-for gratuits modes at the vehice for 3. M at al. More straight of a straight of the straight of the first straight of the straight of the straight of the table redge-redge-for gratuits modes at the vehice for 3. M at al. More straight of the 3. M at al. More straight of the 3. M at al. More straight of the st 13. X. Lai, D. W. Goodman, / Mill. Cabl. A 162, 33 (2000).

- 54, 511, 1 (2002)

- A \$5, 442 (19982)
- A 20, 442 (1984).
 25 DisPitto estimated that relation empirically by ex-trapolating between measured energies of: the gas-sous direct (CN = 7), a (117) mface (CN = 8), and the bulk (CN = 12). Furthermore, we used DePrintols the balls (D. N. = 12). Furthermore, we can be before relation to entimate the version in the NMA model of Fig. 1 and board that the errors due to the decause in hord energy with CM work; comparature for the errors associated with astropolating between only the most table due to the justice justices of the astronometry of the state of the participant of the 26. G. B. McMetter, R. L. Gates, R. T. Baker, J. Catt. 54, 25. State of the state of
- 126 [1078]. 27. We simplified the definition of F_{init} (= ΔF_{init} . . We argument the definition of $E_{\rm ext}$ (= $ME_{\rm ext}$ = $E_{\rm ext}^{\rm ext} + E_{\rm ext}^{\rm ext} + m^{\rm ext}$) has slightly from functor W-I in that we neglected any account activation energy (byport the up it) in autions energy involuted with a motioner detailing from a multiplattice to move onto the support surface, because this in the public to $E_{\rm ext}$.
- a few parameters
- 29. D. E. Staw, C. T. Campboll, J. Phys. Chem. B105, 3776 C. E. Staginos, H. H. Leo, Chem. Eng. Sci. 50, 1327
- [1985].
 31. C. H. Bartholomery, Ed., Sintering Kitetics of Supported Metaliz Perspective (Jos Jandreg Lawraized Paver Law Aproxech, vol. 88 of Stadies & Sanjace Science and Cateljoit (Beavier Science, Amsterdam, Notherlands,
- 32. V. Bondzio, S. C. Rarket, C. T. Campboll, Catal. Lett.
- Y. Bordani, S. L. Farler, M. S. Ster, S. S. Lett. B, 73 (2001).
 F. Conardoy, T. L. Madey, Sarf. Am. Lett. B, 73 (2001).
 S. C. Parlor, A. W. Grant, V. A. Bordzio, C. T. Camp-theory, A. W. Grant, V. A. Bordzio, C. T. Camphall Serf. Sci. 441, 30 (1998)
- H. Cassai, S. Gorgio, C. R. Hony, Philos. Mag. J **B1**, 1649 (2007).

814

- C. T. Campbell, D. E. Start, J. Am. Chem. Soc. 124, 9212 (2002).
- 6.7.12 (2002). 37 The secarginization of Au clasters grown on TrO₂(190) much risks deposition confidence was estimated by scalin give melling intercoopy (12) and high-statistican scaling electron microscopy (22) to be about 1 m. We used a slightly multi-secargin in a because types toring use could have multiplet.
- smallest particles 28. M. Gillet, A. A. Mohammed, K. Manek, E. Gillet, Thin
- Seld Film: 374, 124 (2000).
- 39. S. C. Rarker, thesis, University of Washington, Seattle, WA (2000)

so: 511, 82 (2002). 41. We thank the U.S. Department of Energy, Diffuse of Ratic Energy Sciences, Dharnical Sciences Divinion, for support of the work. D.S. thanks NSF and the University of Washington: Cetter for Nanotechnol-ogy for an ICERT Followship. 14 june 2002; accepted 24 September 2002

Day 7.5 LAT (1971)

2.30 (1998)

40. S.H. Overbary, P.A. Betrand, G.A. Somotal, Chem.

C. Bornbis, A. Emandta, M. Nowicki, H.P. Bonzol, Staf. Sci. 511, 63 (2002).

C. R. Heray, M. Moanier, Mat. Sci. Eng. A217/218

Heterogeneous Atmospheric Aerosol Production by Acid-Catalyzed Particle-Phase Reactions

4.4

Myoseon Jang,* Nadine M. Czoschke, Sangdon Lee, Richard M. Kamens

According to evidence from our laboratory, acidic surfaces on at mospheric aerosols lead to potentially multitoid increases in secondary greanic aerosol (SOA) mass Experimental observations using a multichannel flow reactor, Teflon (polytetrafluoroethylere) film bag batch reactors, and outcloor Tetion-film smog chambers strongly contirm that inorganic acids, such as suffuric acid, catalyze particle-phase heterogeneous reactions of atmospheric organic carbonyl species. The net result is a large increase in SOA mass and stabilized organic layers as particles age. I acid-catalyzed heterogeneous reactions of SOA products are included in current models, the predicted SOA formation will be much greater and could have a much larger impact on climate forcing effects than we now predict.

Gas-phase seactions of volatile organic comnounds (VOCs) associated with nhotochemical oxidant cycles have been of great interest in predicting caone (O,) concentrations and, more recently, SOA formation. SOA has received much attention for a variety of reasons, many of which are associated with the establishment of a national ambient air quaity standard for atmospheric fine particles (J). From a public health perspective, SOAs, which are a major contributor to fine partic-alate matter, have potentially negative health effects. In particular, it is now believed that the potency of a mixture of environmental chemicals, such as an organic and inorganic multicomponent SOA, may be greater than its constitutive parts (T). At the regional scale, SOA formation can contribute to the formation of visibility-reducing haze (2). SOAs affect the Earth's radiative balance (3, 4) directly by altering the scattering proper tes of the atmosphere and indirectly by changing cloud properties. These climate forcing effects are thought to lead to a net cooling effect at the tropopheric level (3). Furthermore, the composition of SOAs influ-Department of Environmental Sciences and Engineer

ing, CB 7431, Rosenau Hall, University of North Caro-lina at Chapel Hill, Chapel Hill, NC 27599, USA. "To whore correspondence straid be addressed. Imait mjang@email.unc.edu

ences the extent of these effects. For examrde, the water content of cloud aerosols, and thus a cloud's lifetime, is mainly influenced by particle acidity and sulfate content

Our understanding of the role SOAs play in climate change and their connection to health effects is limited by numerous uncertainties, particularly the total SOA particle concentra tion and mass, the contribution of tropopheric SOAs to the total particle load, the composition and physical structure of atmospheric aerosols, and the heterogeneous chemistry that influences these parameters. What is known is that biogenic terreness from terrestrial venetation (5) and aromatics from anthroposenic sources (6) are SOA precursors. Also, the gas-phase photooxidation reaction of these VOCs generates large amounts of multifunctional organic carbonyls (7-J0), which are major SOA components. In addition, these components may react heterogeneously to form an additional generation of products in the particle phase. A major class of these heterogeneous reactions is the acid-catalyzed wactions of atmospheric carbonyls (10, 13). Principal candidates for atmospheric acid catalysts are sulfurie acid (H2SO4) and nitric acid (HNO2), which are produced through exidation procassing of \$0, and NO, emitted from fossil fuel combustion (12-15). These are inorganic scids; thus, the effects of acid-catalyzed heterogeneous reactions are essentially interac-

- Non-acid seeds are generated from ammonium sulfate $[(NH_4)_2SO_4]$ solutions
- Acid seeds are generated from solutions of sulfuric acid (H_2SO_4) and $(NH_{4})_{2}SO_{4}$
- Oxidized and non-oxidized organics are added to the Teflon bags
- Analysis of the product functional groups is performed using FTIR spectroscopy

25 OCTOBER 2002 VOL 298 SCIENCE WWW.sciencemag.org

Potential Acid Catalyzed Reactions

Acid catalyzing step

Hydration

... with potential propagation of the above steps to form higher n-mers

Potential Products in Presence of Alcohols

Acetal formation

Acid Catalyzed Formation of SOA

A Brief Summary of Some Key Literature to Date

Jang and Kamens, <i>Environmental Science</i> & <i>Technology</i> , 2001 Jang et al., <i>Science</i> , 2002	Acid catalyzed formation of SOA first suggested to cause large increases in production of organic PM; unrealistic concentrations and conditions for various organic gases and acidic particle seeds
linuma et al., <i>Atmospheric Environment</i> , 2004	For the alpha-pinene/ozone system, using more atmospherically relevant conditions, an increase of 40% in production with sulfuric acid seed compared to neutral ammonium sulfate seed – a potential upper limit for this system
Gao et al., <i>Environmental Science</i> & <i>Technology,</i> 2004 Gao et al., <i>Journal of Physical Chemistry A,</i> 2004	For the alpha-pinene/ozone system, an increase of 5% in production with moderately acidic ammonium bisulfate seed (more typical of ambient particle conditions) compared to neutral ammonium sulfate seed. Acidity not necessary to form "oligomer" products.

Thermodynamic Analysis of "Oligomers"

Research Question

- Organic PM now modeled assuming oxidation of atmospheric VOCs leads to monomeric oxidation products that condense to form SOA
 - VOC + oxidant + prod ① SOA
- Laboratory results suggest that oxidation products may also
 - continue to react
 - combine to form dimers & higher oligomers (acid-catalyzed?)
 - condense and/or persist in the particle-phase

 - prod1 + prod2 + dimer ()(+) low volatility SOA
 - ...

Although acid-catalyzed reactions may be kinetically controlled, the final product mixture must remain thermodynamically consistent

Accretion Reaction Thermodynamics: Analysis of "Oligomer"[†] Formation

†"Oligomer" is term that is currently overused and misused.

Accretion reaction; general form:

 $A_a + B_a \stackrel{K}{\underset{1}{\leftarrow}} C_g$ accretion in gas phase (could also occur on particle

C_{lig} formation (cond.) of aerosol by gas/particle (G/P) partitioning

- A, B = oxidation products of VOCs, or other atmospheric constituents (e.g., NH_3)
- C = condensable low volatility accretion product

 K_1 and K_2 = predictable thermodynamic equilibrium constants

Governing Thermodynamics:

equilibrium for accretion reaction:

$$K_1 = K_{eq} = \frac{p_C}{p_A p_B}$$

surface)

p = partial pressures (atm)

equilibrium for G/P partitioning:

$$\mathcal{K}_2 = \mathcal{K}_p = rac{C_{iiq} / OPM}{C_g}$$

- C_{liq} = concentration of constituent in liquid-like OPM phase (ng m⁻);
- C_{q} = concentration of constituent in gas phase (ng m⁻³);
- OPM = atm. level of organic particulate matter into which accretion product constituent can condense (ug m⁻³)²⁰

Overview of Reactants of Interest: Accretion Reactions

Reactant	Significant OPM Formation? (No, Yes, or Possible)	Reference
Ketones	Νο	Barsanti and Pankow, Atmos. Env. (2004)
Diketones	Νο	Barsanti and Pankow Atmos. Env. (2005)
\sim C ₅ and lower aldehydes	No	Barsanti and Pankow Atmos. Env. (2004)
~C ₆ and higher aldehydes	Possible by aldol condensation under certain circumstances	Barsanti and Pankow Atmos. Env. (2004)
Glyoxal	Yes by hydration/oligomerization	Barsanti and Pankow Atmos. Env. (2005)
Methylglyoxal	Yes by aldol condensation	Barsanti and Pankow Atmos. Env. (2005)
~C ₅ and lower dialdehydes (except glyoxal)	Νο	Barsanti and Pankow Atmos. Env. (2005)
~C ₆ and higher dialdehydes	Possible by aldol condensation under certain circumstances	Barsanti and Pankow Atmos. Env. (2005)
Acetic acid	No	Barsanti and Pankow (2006, in preparation)
Dicarboxylic acids	Yes by ester and amide formation	Barsanti and Pankow (2006, in preparation)

© 2005 Electric Power Research Institute, Inc. All rights reserved.

"Semiempirical Model for Organic Aerosol Growth by Acid Catalyzed Heterogeneous Reactions of Carbonyls"

- Jang et al., "Semiempirical Model for Organic Aerosol Growth by Acid Catalyzed Heterogeneous Reactions of Carbonyls" *Environ. Sci. Technol.*, 39, 164-174, 2005
- Comment Points: Barsanti et al. (*Environ. Sci. Technol., 39*, 2005):
 - Absorptive partitioning theory Pankow (1994) was misapplied.
 - "Semiemprical model" characterizes <u>kinetics of their experiments only</u>; cannot be applied to predicting how much organic PM will form under different experimental conditions, or in the atmosphere.
- Response Points: Jang et al. (*Environ. Sci. Technol.*, 39, 2005):
 - Agree that Pankow (1994) model is basis for equilibrium modeling of organic PM formation; and
 - Continue to argue that their results are useful in kinetic considerations of organic PM formation under "acid catalysis" conditions, but do not explain how that could be done.

Ambient Samples from SEARCH Network

- Analysis of samples to "search" for acid catalysis effects and oligomers
 - Samples taken at four sites in the Southeastern Aerosol Research and Characterization (SEARCH) Network during Summer 2004 characterized for polar organic components of organic PM.
 - Oligomeric products were not identified in the MW range analyzed.
 - Ambient data showed no evidence of acid catalysis playing any discernable role in SOA production, consistent with laboratory and theoretical studies. (Still possible, but unlikely under ambient conditions.)
 - Ambient data have evidence of biogenic oxidation products and that can be a large regional source of SOA in the Southeast.
 - The most-prevalent identified organic compound (~¼ of identified organic PM) contained sulfur and nitrogen in the structure (C₁₀H₁₆NO₇S or other isobaric structures), likely formed by reaction of NOx and SO₂ with monoterpene oxidation products.

Research & Development

Thermodynamic Modeling of Secondary Organic Aerosol Formation

Multiple Liquid (and Solid) Phases

Pankow, J.F. 2003. Atmos. Environ., 37, 3323-3333.

Activity Coefficient Methods

Purely Inorganic Mixtures

(water + salts)

Bromley, Kusik-Meissner, Pitzer

as implemented in

SCAPE.2, ISORROPIA

Purely Organic Mixtures

(organics + water)

UNIFAC

Activity Coefficient Methods

Primarily Inorganic Mixtures

(water + salts + organics)

Clegg, S. *et al.* **2001.** *J. Aerosol Sci., 32,* 713-738.

Clegg, S., Seinfeld, J.H. **2004.** *J. Phys. Chem. A, 108,* 1008-1017

(Extended ZSR method)

Primarily Organic Mixtures (organics + water + salts)

Erdakos, G.B. *et al.* **2004.**

Erdakos, G.B., Pankow, J.F. 2004.

Extended-UNIFAC method

Extended-UNIFAC

Results from simulations of PM formation in presence/absence of salts suggest that failure to consider salts may cause large errors in PM values.

Future Methods: Extended-UNIFAC/UNIQUAC

• Yan, et al. 1999. Fluid Phase Equilibria, 162, 97-113.

 $\ln \zeta = \ln \zeta^{LR} + \ln \zeta^{MR} + \ln \zeta^{SR}$

• LR = Long-Range electrostatic interactions;

Inζ^{LR} : modified Debye-Hückel equation

• MR = Middle-Range indirect charge interactions (i.e., charge-dipole interactions and charge-induced dipole interactions);

 $In\zeta^{MR}$: second virial coefficient-type equation

- SR = Short-Range interactions (i.e., dipole-dipole interactions);
 - $\ln \zeta^{SR}$: UNIFAC equation

Extended-UNIFAC: optimization of Yan, *et al.* equation parameters through a fitting of experimental data sets containing atmospherically relevant functional groups (CH₃, CH₂-CO, COOH, OH, H₂O, Na⁺, NH₄⁺, Cl⁻, SO₄²⁻, NO₃⁻, etc.)

Thermodynamics Model for PM

$$K_{p,i} = \frac{(ng/\mu g)_{\text{particle phase}}}{(ng/m^3)_{\text{gas phase}}} = \frac{F_i / \text{TPM}}{A_i} = \frac{760 RT f_m}{10^6 \text{MW}_m \zeta_i / L_i}$$

Unified Gas/Particle Partitioning Theory

Partitioning of all mixture components between k particle phases and the gas phase may be calculated with knowledge of the total concentration (T_i) of all species and all particle-phase component activity coefficients, ζ_i .

All ζ_i can be calculated with **Extended-UNIFAC and, ultimately... Extended-UNIQUAC.**

$$F_{i} = \frac{\sum_{k} K_{p,i}^{k} \text{ TPM}^{k}}{1 + \sum_{k} K_{p,i}^{k} \text{ TPM}^{k}} (T_{i})$$

Pankow, J.F. 2003. Atmos. Environ., 3323-3333.

(Some) Future Challenges

- Update of aqueous-phase chemistry modules
 - Overall and particularly with respect to aqueous-phase reactions of dissolved organic compounds
- Characterization of primary organic PM within aerosol modules
- Heterogeneous and in-particle processing of organic PM
- Influence of NOx and SO₂ on organic PM formation
- Identification and formation of organic-nitrogen compounds in particulate matter
- Effects of condensable organic compounds on stabilization of molecular clusters and growth beyond Kelvin barrier

•