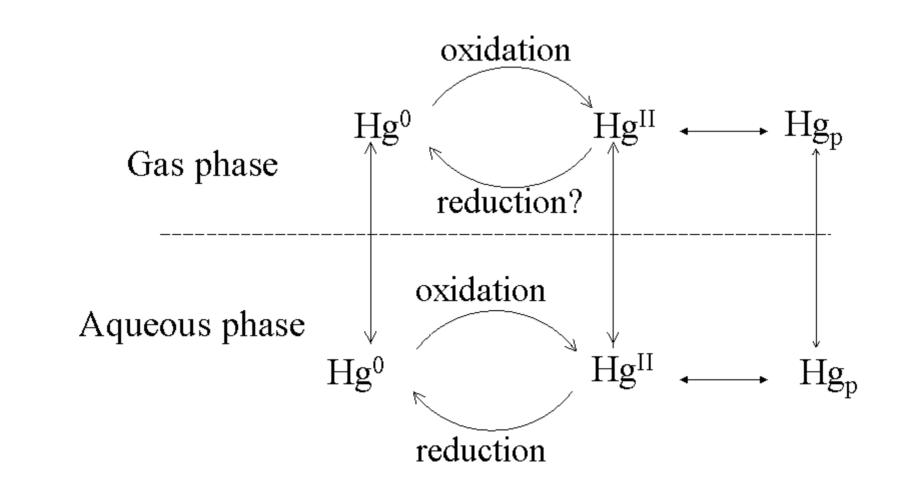


Development and Application of CMAQ-MADRID-Mercury

Krish Vijayaraghavan, Prakash Karamchandani, Shu-Yun Chen and Christian Seigneur

AER San Ramon, CA

CMAS Workshop 2005 Chapel Hill, NC


Atmospheric Mercury


- Mercury is present mostly as three "species" in the atmosphere
 - Elemental mercury
 - Hg⁰
 - Divalent gaseous mercury
 - HgCl₂, Hg(OH)₂, HgO, etc.
 - referred to collectively as Hg^{II} or reactive gaseous mercury (RGM)
 - Particulate-bound mercury:
 - Hg^{II} or Hg⁰ adsorbed on PM
 - mostly divalent
 - referred to collectively as Hg_p

Atmospheric Chemistry of Mercury

Atmospheric and Environmental Research, Inc.

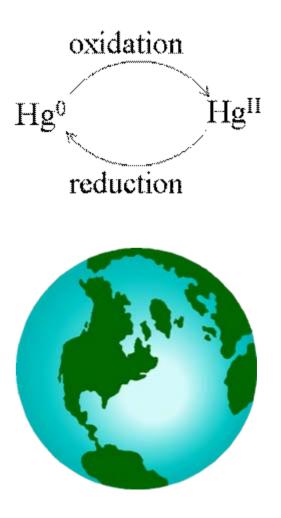
Atmospheric Deposition of Mercury

- Hg⁰ is not very soluble and has a low dry deposition velocity (<0.1 cm/s)
- Hg^{II} is very soluble and adsorbs readily on surfaces: it is rapidly removed by wet and dry deposition
- Hg_p is mostly in the fine particle range and will remain in the atmosphere for several days in the absence of precipitation

Atmospheric Half-lives of Hg Species

- Hg(0)
 - Chemical oxidation: ~ 2-3 months on average*
 - Dry deposition: ~ 3 months in the boundary layer
- Hg(II) or RGM
 - Chemical reduction: fast in presence of clouds
 - Dry deposition: ~ few hours-2 days in the boundary layer
 - Wet deposition: fast
- Hg(p)
 - Dry deposition: ~ 1 week in the boundary layer
 - Wet deposition: relatively fast

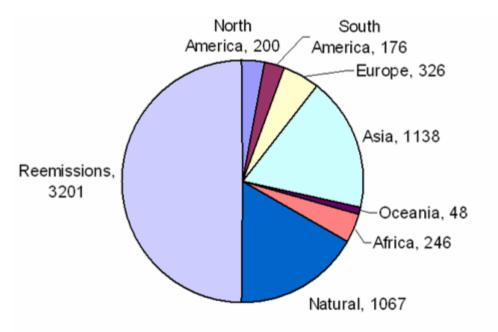
* excluding Arctic and marine boundary layer chemistry



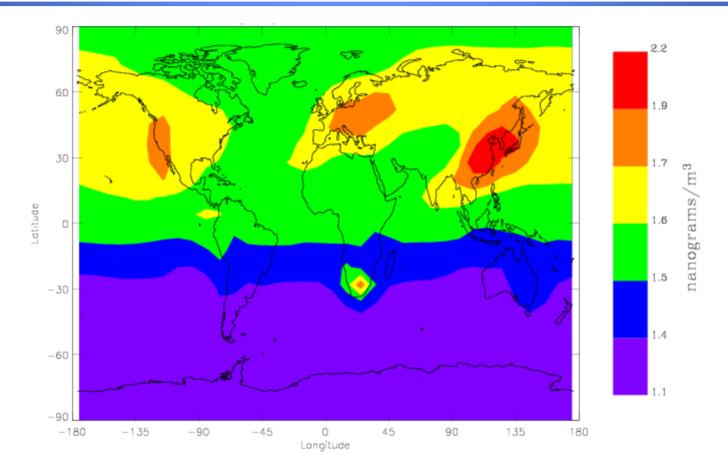
Atmospheric Half-lives of Hg Species

Hg(0) and Hg(II) may undergo several red-ox cycles before Hg(II) is removed via dry or wet deposition

Atmospheric Hg has (currently) a half-life estimated to be ~ 10 months (lifetime of ~ 1.2 years)


=> Hg is a global pollutant

Global Mercury Emissions


- Global emissions total about 6000 Mg/y with an uncertainty of a factor of 2
- Current emissions are about 3 times pre-industrial emissions
- Re-emissions of previously deposited mercury are a significant fraction of total emissions (30 to 50%)

Annual Hg emissions (1999 estimate)

Global Simulation Annual surface concentrations of Hg(0)

Atmospheric and Environmental Research, Inc.

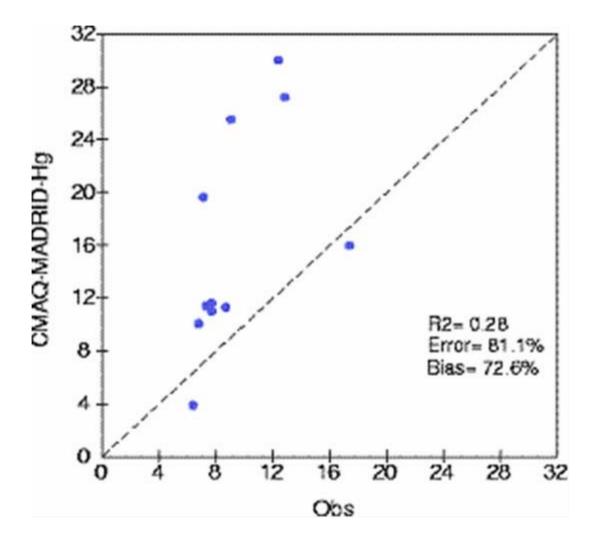
- Good agreement with data (Seigneur et al., *ES&T*, 38, 555, 2004)
- Provides boundary conditions of mercury for the continental/regional model

- Single state-of-the-science model to simulate ozone, PM and mercury
- EPA CMAQ as host model (version 4.4)
- State-of-the-science treatment of PM (MADRID)
- Advanced treatment of plumes for ozone and PM (APT)
- Incorporation of mercury processes (AER chemistry and removal processes)

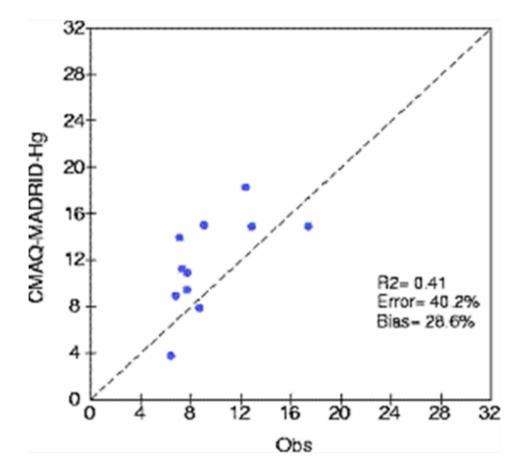


"One-atmosphere" Mercury Model

- CMAQ-MADRID-Hg is currently operational
 - Initial application to the continental U.S. for 1996
 - Comparison with MDN data completed
 - Available in the Model Download section at http://www.cmascenter.org (CMAQ-MADRID 2004)

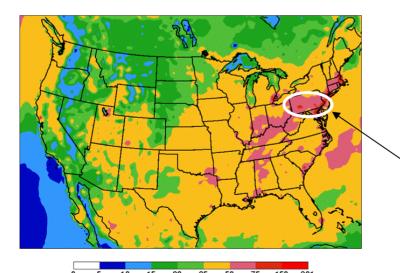


Total Hg Deposition Simulated with CMAQ-MADRID-Hg for 1996 (μg/m²-yr)



Comparison of CMAQ-MADRID-Hg with 1996 MDN Data (µg/m²-yr)

Comparison of CMAQ-MADRID-Hg with 1996 MDN Data (µg/m²-yr)



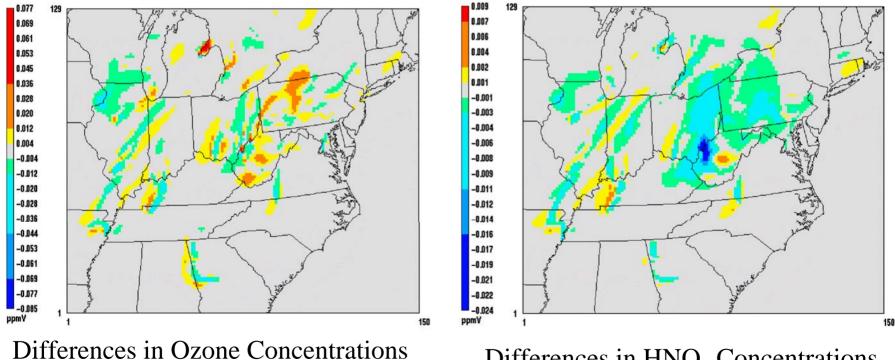
Mercury deposition was adjusted based on actual precipitation amounts

Next Steps 1. Better treatment of plumes from elevated point sources

- Incorporate plume treatment within the 3-D grid model CMAQ-MADRID-Hg
 - More realistic representation of local impacts
 - Treatment of plume chemistry
 - Minimization of the "Pennsylvania anomaly"

 Overestimation of Hg deposition downwind of the Ohio Valley

Power Plant Plume Mercury Chemistry


- Evidence of Hg^{II} reduction in power plant plumes
- Reduction of Hg(II) by SO₂
 (possibly via heterogeneous reaction on particles) is compatible with the global Hg cycling budget
- Collaboration with Susannah Scott (UCSB) regarding laboratory experiments of plume chemistry

Plume-in-grid Treatment (APT) Effect on ozone and nitric acid

Differences between APT and the base CMAQ (40 power plants, July 1995 simulation, eastern United States)

Differences in HNO₃ Concentrations

One may expect significant effects for mercury as well

Next Steps 2. Mercury Model Intercomparison

- Use of common inputs
 - Meteorology
 - Emissions
 - Boundary conditions from a global model
- EPA Models
 - CMAQ-Hg
 - REMSAD
- AER/EPRI Models
 - CMAQ-MADRID-Hg (with and without plume treatment)
 - TEAM

Conclusions

- CMAQ-MADRID-Mercury: "One-atmosphere" mercury model developed using CMAQ as the host model
- State-of-the-science treatment of PM (MADRID) and mercury processes
- Boundary conditions from a global mercury chemistry transport model
- Initial application to continental U.S. for 1996
- Subsequent steps:
 - Plume-in-grid treatment of mercury and power plant plume mercury chemistry
 - EPA's mercury inter-comparison study

Acknowledgements

• EPRI

Development and Application of CMAQ-MADRID-Mercury

Krish Vijayaraghavan, Prakash Karamchandani, Shu-Yun Chen and Christian Seigneur

AER San Ramon, CA

CMAS Workshop 2005 Chapel Hill, NC