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1.  INTRODUCTION 

Air quality modeling has expanded in both 
sophistication and application over the past decade. 
Meteorological and air quality modeling tools are being 
used for research, forecasting, and regulatory related 
emission control strategies . Results from air quality 
simulations have far reaching implications and are 
closely linked to the meteorological model that drives 
chemical transport, diffusion, and reactions . Therefore, 
modeling systems should be evaluated by considering 
all components involved (Hogrefe et al. 2001). This 
connection can be achieved by linking the statistical 
analysis  of the air quality model with that of the 
meteorological model in space and time, in order to 
distinguish how errors in the air chemistry model are 
attributed to errors in the meteorological modeling. 

An evaluation tool is being developed that will 1) 
provide a better sense of meteorological model 
uncertainty; 2) standardize the evaluation process; 3) 
manage a large volume of evaluation results ; 4) make 
the overall evaluation process more efficient and less 
labor intensive; and 5) directly link the meteorological 
model evaluation with the air quality model evaluation.  

This study applies the model evaluation tool to a 
year-long simulation using the Pennsylvania State 
University (PSU) / National Center for Atmospheric 
Research (NCAR) fifth-generation mesoscale model 
(MM5). The results are reported not only to examine the 
MM5 model performance, but also to demonstrate the 
effectiveness of the evaluation system. Among the 
evaluations  presented are surface-based 2 m 
temperature, 10 m wind, 2 m mixing ratio, precipitation 
and solar radiation. Wind profiler data are also used to 
examine the ability of MM5 to simulate the vertical 
distribution of wind over the diurnal cycle. Additionally, a 
direct linkage between the meteorological and the air 
quality model performance, specifically ozone and 
nitrate, is attempted. Only a brief summary of the results 
are presented here because of manuscript length 
requirements . 
 
2.  METHODOLOGY 
 
2.1 Model Simulations 
 

An important effort was recently undertaken to 
examine both air quality in general as well as the 
capability of simulating air quality over the Continental 

United States. A year-long Community Multiscale Air 
Quality (CMAQ) model (Byun and Ching, 1999) 
simulation was performed over the continental United 
States, with a horizontal grid spacing of 36 km , for the 
time period from January 01 – December 31, 2001. The 
required meteorological fields for the CMAQ simulation 
were supplied by the MM5 model (Grell et al., 1994) 
version 3.6.1. These model outputs are the focus of the 
evaluation. For specifics on the MM5 configuration refer 
to McNally (2003). For specifics on the CMAQ 
configuration refer to Eder (2004). 

 
2.2 Model Evaluation Tool 
 

The model evaluation tool is being designed to be 
flexible, extendable, and user-friendly. The current 
version is compatible with MM5, Weather Research and 
Forecast (WRF) model, and National Centers for 
Environmental Prediction (NCEP) Eta model output. 
Observations from National Oceanic and Atmospheric 
Administrations (NOAA) Forecast Systems Laboratory 
(FSL) Meteorological Assimilation Data Ingest System 
(MADIS) are matched in time and space with the model 
output. These matched model-observation pairs for 
each variable are immediately stored in a relational 
database, which is the core of the evaluation system . 
Various analysis programs connect to the database and 
extract user-specified data, then generate statistical and 
analysis plots. Currently, programs have been 
developed to produce spatial statistics over specified 
time periods, time series statistics , and time series plots 
for various observation sites, comparisons between 
modeled precipitation and the national gridded 
precipitation analysis, as well as a utility to extract and 
compute statistics for subsets of data (e.g., temperature 
statistics for the mountains of NC, during the winter 
nighttime hours  when temperature < 0ºC and wind 
speed < 1 m·s -1). Also, a utility is available to examine 
the simulated vertical profiles of wind and temperature 
using observations from the National Profiler Network 
(NPN).  

An attraction of the relational database is the ability 
to link data sets (e.g., air quality with meteorological 
data). This is achieved by extracting a set of air quality 
data (model and observed values) and corresponding 
meteorology in time and space based on some criteria 
(e.g., 8-h ozone conc. > 60 ppb and region = eastern 
U.S.). Conversely, a set of meteorology and air quality 



data (model and observed values) can be extracted 
based using meteorological dependent criteria (e.g., 8-h 
ozone conc. when 2 m temperature > 300 K and 10-m 
wind speed < 3 m·s -1 and 10-m wind direction between 
180º and 330º). Ozone observations from the 
Aerometric Information Retrieval System (AIRS) 
network and particle phase nitrate observations from the 
Interagency Monitoring of Protected Visual 
Environments (IMPROVE) network are used in this 
study. Examples of linking these datasets are presented 
in Section 3.2 

 
3.  RESULTS 
 
3.1 General Statistics 
 

Domain-wide statistics provides a general measure 
of how well the model simulation represents the 
conditions that actually occurred. Table 1 is a 
compilation of several well-known model performance 

statistics for 2 m temperature from the 2001 MM5 
simulation. These are presented for a variety of data 
subsets in order to show the flexibility of the model 
evaluation tool. For example, seasonal statistics were 
derived using date start and stop criteria. Data were 
also extracted from the database by station elevation 
criteria to examine model performance over and near 
the coastal waters (elev. < 25 m), inland (25 m < elev. < 
500 m) and in higher elevations (> 500 m). Clustering 
days with similar weather patterns was also performed. 
Lastly, specific datasets can be examined, although not 
performed in this study, using land use, meteorological 
conditions, observations network, and/or geographical 
bounds  as criteria. 

Overall, the MM5 2001 simulation did well at 
representing the meteorological conditions near the 
surface. Table 1 indicates the model performed best in 
the summer when the temperature bias was -0.18ºC, 
mean absolute error (mae) 1.63ºC and an index of 
agreement (ioa) of 0.94. In winter, the model performed 
the poorest of all cases  because of a cold bias at night. 
The overall bias was -1.25ºC, but the bias was worse in 
the early morning (~ -3.00ºC) and approached zero in 
the afternoon (diurnal bias not shown). 

As expected, when examining the statistics as a 
function of elevation, regions that were not influenced by 
the coast and mountains  were simulated best (bias:       
-0.22ºC, mae: 1.65ºC) followed closely by coastal areas. 
The statistics support that it is more difficult to simulate 
the meteorology over mountainous areas where 
mesoscale variations are not resolved, especially at a 
36 km scale. Further support for this are the metrics that 
were calculated for Colorado over the same summer 
period, which indicate large temperature errors (2.72ºC) 
and bias (-1.60ºC) as do the statistics for Washington 

state (bias: -0.42ºC, mae: 2.00ºC).  
Table 1 also presents the metrics  of several cases 

for clusters of days that represent distinct synoptic 
patterns , determined by a map typing procedure 
(McKendry et al. 1995). Cluster 1 represents  patterns 
where a Canadian high pressure was anchored over the 
northeast U.S. Cluster 4 represents a synoptic pattern 
where a cold front passes off the east coast of the U.S. 
and high pressure builds into the central U.S. Cluster 7 
corresponds to weak large-scale flow over the entire 
eastern U.S., which typically occurs in the summer. The 
metrics are all similar for clusters 1, 4 and 7. This 
implies  that the model performs consistently during 
various weather patterns. However, when the spatial 
distribution of these statis tics were plotted (not shown), 
it was apparent that some areas (i.e., where fair weather 
exists) are better simulated than others.  

Temperature statistics (Table 1) were also 
calculated for a number of states across the U.S. The 2 
m temperature for the Midwest state of Iowa was best 
simulated, which is not surprising since it has a 
relatively homogenous surface. North Carolina and New 
York were also well simulated. As already noted, 
mountain states like Washington and Colorado were, 
comparatively, not as well simulated, as temperatures 
were simulated too cool. The warm season desert 
climate of Arizona was simulated worst among the 
states with an average error of 3.31ºC and bias of           
-2.44ºC.  

In general, these statistics are comparable and in 
most instances better than previous model evaluations . 
Hogrefe et al. (2001) presented performance statistics 
from a similar model setup over the Eastern U.S. In that 
study the mean absolute error for the entire domain was 
2.22ºC, the bias was -0.93ºC. Other more localized 

Cases Sample 
Size MAE BIAS IOA 

Winter 2135744 2.24 -1.25 0.95 
Spring 2167129 1.85 -0.52 0.95 

Summer 2222299 1.63 -0.18 0.94 
Fall 2265935 1.72 -0.34 0.96 

Inland* 1491581 1.65 -0.22 0.93 
Mountains* 103664 1.85 0.22 0.92 

Marine* 445854 1.69 -0.34 0.57 
Cluster 1 1751747 1.87 -0.53 0.76 

Cluster 4 794300 1.95 -0.48 0.84 
Cluster 7 500047 1.90 -0.61 0.80 

NC* 102700 1.63 -0.57 0.87 
FL* 119404 1.73 -0.18 0.72 
TX* 168723 1.76 -0.92 0.86 
IA* 96080 1.57 -0.10 0.93 

CO* 62021 2.72 -1.60 0.88 
NY* 72920 1.69 -0.33 0.91 
WA* 72231 2.00 -0.42 0.91 
AZ* 46114 3.31 -2.44 0.83 

Table 1. Mean Absolute Error (MAE), Mean Bias 
(BIAS) and Index of Agreement (IOA) calculated using 
hourly modeled and observed 2 m temperature (K) 
data from several data subsets. *Statistics were 
calculated for summer only (Jun 21-Sep 21). 



MM5 studies (Baker 2004; Stauffer and Deng 2003) 
report mean absolute errors on the order of 1.50ºC at 
best to 3.00ºC at worst, with temperature bias on the 
order of     -2.00ºC to 0.50ºC.  
 

3.2 Linked Air Quality-Meteorology Evaluation 

 
Several chemical species  modeled in CMAQ are 

especially sensitive to meteorological conditions , 
including ozone (O3) and nitrate (NO3

-), which are 
controlled in part by the amount of incoming solar 
radiation at the surface and relative humidity, 
respectively. In theory, biases  in the modeled 
meteorology will lead to biases in the predicted air 
quality. To explore this relationship, the meteorology 
and air quality concentrations were extracted for the 
same location and time using the evaluation database. 

Ozone and associated 2 m temperature were 
obtained for a variety of cases/criteria for the Eastern 
U.S., and from these data subsets the model biases 
were calculated. The ozone values compared are the 
daily 8-h maximum for each site over the May 15, 2001 
to September 15, 2001 period. These O3 data were 
linked with the mean observed and modeled 2 m 
temperature between 1000-1800 LST from the nearest 
(within 10 km , on average) weather station. Table 2 
provides a description of the various cases. Table 3 lists 
the ozone and 2 m temperature bias for each case. In 
theory, one would expect that a cold model bias during 
the daytime is in many instances, related to over-
simulated cloudiness and lower incoming solar radiation 
at the surface. This situation would lead to lower ozone 
concentrations  in the air quality model. This logic is 
weakly supported by the bias comparison between 
temperature and ozone. Case 2 has a temperature bias 
of -4.75ºC and ozone bias of -2.17 ppb, conversely 
Case 1 has biases of -0.36ºC and 6.16 ppb. In fact, the 
correlation coefficient of the ozone and temperature bias 

for these six cases is 0.38, so it appears that there is at 
least a weak relationship between the accuracy of the 

simulated temperature and ozone. 
 Aerosol nitrate was examined in a similar manner. 

Daily modeled and observed nitrate were matched with 
the mean observed and modeled relative humidity (2 m) 
between 0200-0800 LST. The meteorology was 
evaluated for this  period because aerosol nitrate 
generally peaks in the early morning and is most 

influenced by high relative humidity (Nenes et al. 1998) 
which typically occurs overnight into the early morning.  

 
As in the ozone analysis, several cases were 

chosen to examine this  relationship (Table 4). Table 5 
provides the nitrate (NO3

-) and 2 m relative humidity 
(RH2m) biases for each case. Higher RH2m results in 
larger NO3

-
 concentrations  (Nenes et al. 1998). 

Therefore, if the meteorological model overpredicts the 
RH2m, the air quality model will likely overpredict NO3

-. 
The bias table illustrates this relationship, especially for 
cases 3 and 4 which include cooler months (Jan-May) 
when particle phase NO3

- concentrations  are overall 
higher. Case 3, which includes  all data when RH2m > 

Case Description 

Case1 All available samples  

Case 2 
All available where mean daytime 
temperature (1000-1800 LST) > 31ºC 
(88º F) 

Case 3 Same as Case 2 but only instances 
where 8-h O3 > 60 ppb 

Case 4 
Same as Case 3 but only instances 
where there was no model or observed 
precip. 

Case 5 Same as Case 3, but where there was 
model precip, but no observed precip. 

Case 6 Same as Case 3, but where there was 
observed precip, but no model precip. 

 
 Var Sample 

Size BIAS NMB(%) 

O3 35854 6.16 12 
Case1 

T2m 35854 -0.36  
O3 1303 4.37 7 

Case 2 
T2m 1303 -2.70  
O3 874 -0.30 0 

Case 3 
T2m 874 -2.64  
O3 3406 1.90 2. 

Case 4 
T2m 3406 -1.90  
O3 3060 -2.17 -3 

Case 5 
T2m 3060 -4.09  
O3 598 0.84 1 

Case 6 
T2m 598 1.56  

Case Description 

Case1 
All instances where mean modeled RH 
between 0200-0800 LST > 90% and 
mean mod-obs RH >0 

Case 2 Same as Case1, but only instances 
where mod-obs RH < 0 

Case 3 Same as Case 1, but for the period from 
Jan 01-May 31 

Case 4 Same as Case 2, but for the period from 
Jan 01-May 31 

Table 2. Descriptions of O3 and temperature datasets 
from which Table 3 statistics were calculated. All cases 
included only Eastern U.S. observations from May 15 
to Sep. 15, 2001 

Table 3. Number of data points (Count), Mean Bias 
(BIAS) and Normalized Mean Bias (NMB) calculated 
using the linked ozone (O3) in units of ppb, and 
temperature (T2m) datasets described in Table 2. 
Correlation (O3 bias, T2m bias) = 0.38. 
 

Table 4. Descriptions of NO3
- and relative humidity 

datasets from which Table 5 statistics were 
calculated. 



90% and the RH2m bias is > 0 (model larger than 
observation) has a significant NO3

- bias of 0.44 µg·m-3, 
which is about 50% of the mean observed value. In 
case 4, the bias is calculated for data where the 
modeled RH2m > 90%, but the RH2m bias is < 0 (model 
less than observation). The resulting bias in NO3

- is 
reduced to 0.03 µg·m -3 or 4% of the mean observed 
value. To a lesser degree, Case 1, when the RH2m is > 
90% and bias is > 0 in the warmer months, the  NO3

- is 
mean normalized bias lessens from -50%, in the 
opposite case (Case2) to -15%.The relationship 
between RH and NO3

- is stronger than between O3 and 
2 m temperature because the linkage is more direct.  

 

4.  DISCUSSION 
 

Results obtained from a recently developed model 
evaluation tool using year-long MM5 and CMAQ model 
simulations were presented. The capability of subsetting 
evaluation results by a wide range of criteria was shown 
to provide important insights into how the meteorological 
model performed in a variety of instances. For example, 
it was shown that arid and mountainous climates were 
simulated worst in term of temperature. This may imply 
that the soil model is not suited for strict use in desert 
regions , and finer model resolution may be required in 
mountainous areas. 

Additionally, it was shown that making the linkage 
between the air quality and meteorological errors is 
useful to isolate air quality prediction errors that result 
from meteorological errors. A weak relationship between 
ozone errors and 2 m temperature errors was found as 
well as a strong correlation between aerosol nitrate 
concentration errors and relative humidity errors. Future 
efforts will focus  on examining the relationship of other 
chemical species with meteorology, as well as 
developing more specialized analysis tools for the 
evaluation toolkit. 
 
Disclaimer. The research presented here was 
performed under the Memorandum of Understanding 
between the U.S. Environmental Protection Agency 
(EPA) and the U.S. Department of Commerce’s National 

Oceanic and Atmospheric Administration (NOAA) and 
under agreement number DW 13921548. Although it 
has been reviewed by EPA and NOAA and approved for 
publication, it does not necessarily reflect their policies 
or views. 
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 Var Sample 
Size BIAS NMB(%) 

NO3
- 315 -0.06 -15 

Case1 
RH2m 347 6.8  
NO3

- 373 -0.18 -51 
Case 2 

RH2m 373 -2.8  
NO3

- 225 0.44 51 
Case 3 

RH2m 225 16.62  
NO3

- 97 0.03 4 
Case 4 

RH2m 97 -2.88  

Table 5. Number of data points (Count), Mean Bias 
(BIAS) and Normalized Mean Bias (NMB) calculated 
using the linked nitrate (NO3

-) in units of µg·m -3 and 
percent relative humidity (RH2m) datasets described in 
Table 4. 


