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1.  INTRODUCTION 
 

The air quality forecast version of the 
Community Modeling Air Quality (CMAQ) model 
(CMAQ-F) was developed from the public release 
version of CMAQ (available from 
http://www.cmascenter.org), and is running 
operationally at the National Weather Service's 
National Centers for Environmental Prediction 
(NCEP). Most of the modifications to CMAQ focus 
on tailoring the model's performance to the 
operational hardware and the parallel computing 
environment at NCEP and effectively managing the 
parallel input and output (I/O) processes to achieve 
scalability. This has been accomplished by 
asynchronously overlapping computation with I/O 
writing to disk (WTD) by a dedicated processor. 

In this paper, we describe two different ways of 
placing the WTD processor. Benchmark results 
with regards to the WTD processor placement and 
an extension to more than one WTD processor are 
presented. In addition, a benchmark comparison 
between the I/O implementation in the CMAQ-F and 
the community version of CMAQ is provided. 

 
2.  I/O STRATEGY 
  

In CMAQ, all processors perform computation. 
At the end of each time step, output data is sent to 
one of the computational processors as a WTD 
processor, which then gathers and assembles data 
and writes it. We will label this strategy, "stnd" 
(standard). 

CMAQ-F uses a dedicated WTD processor to 
perform the output task, which gathers the data 
from the computational processors and writes the 
data to disk. We label this strategy, "dwtd"   
(dedicated write to disk).   

In either approach, there are two distinct 
implementations: assign either the first or the last 
processor from the allocated processor group to be 
the WTD processor. The former choice is used 
currently in both CMAQ and CMAQ-F. 

Figure 1 depicts a scenario of allocating 9 
processors on an IBM eServer p655+ system, 
which has 8 CPU's on a node with two on a chip. 
There are 8 processors that perform computation 
and one, indicated in the darker color, is dedicated 
for WTD. The logical view of the 8 computational 
processors is shown in the middle of Figure 1. We 
considered two physical mappings for the 
placement of the WTD processor, as shown in 
Figure 1. 
 

     Figure 1 also shows interprocessor 
communication, where dotted arrows indicate 
communication in the y direction and red arrows in 
the x direction. It is clear that with these two WTD 
placement choices, there are different off-chip and 
off-node communication pathways in the x and y 
directions in CMAQ-F. For CMAQ, the first 
processor usually has a higher work load than the 
last processor because of the domain 
decomposition is uneven. Therefore it would seem 
to be advantageous to assign the last processor for 
WTD. 
 
3.  DESCRIPTION OF EXPERIMENTAL  

 
    Figure 1: Processor allocations and interprocessor     
communication (top: WTD processor at beginning, 
bottom: WTD processor at end) 



 RUNS 
 

       A set of experiments was conducted that 
consists of six groups with various numbers of 
processors and configurations. Each group consists 
of four cases: 1) the standard (stnd) strategy; 2) 
using the standard strategy but with the same 
number of computational processors as the 
dedicated WTD processor case (stndw); 3) a single 
dedicated WTD processor case (1-dwtd), and 4) 
with two dedicated processors (2-dwtd). Both WTD 
processor placement schemes were applied to the 
entire set of experiments. Table 1 summarizes the 
processor configuration for each case. All runs were 
conducted on EPA's IBM eServer during regular 
operating conditions. The domain that was tested 
covers the eastern half of the US. A 3-hour 
simulation without aerosols, and a longer, 12-hour 
simulation with aerosols were conducted. Results 
are presented as an average of three separate runs. 
(The 3-hour data for stndw are not presented.) 
       
Table 1: Processor configuration of each run 

Group stnd stndw 1-dwtd 2-dwtd 
1 3x3 4x2 4x2+1 4x2+2 
2 4x4 5x3 5x3+1 5x3+2 
3 5x5 8x3 8x3+1 8x3+2 
4 11x3 8x4 8x4+1 8x4+2 
5 7x7 8x6 8x6+1 8x6+2 
6 13x5 8x8 8x8+1 8x8+2 
 
Performance is affected by domain 

decomposition as can be seen in Table 2. However, 
in this study, we did not attempt to account for 
performance differences due to processor 
configuration. 
 
Table 2: Performance of a 3-hr simulation with 
various configuration of 16 and 64 processors 

PE conf. 1x16 2x8 4x4 8x2 16x1 
Time (sec) 409.7 372.0 378.0 391.7 372.3 

 
PE conf. 1x64 2x32 4x16 8x8 16x4 32x2 64x1 

Time (sec) 333.3 236.0 241.3 241.0 227.3 217.0 224.3 

 
4. EXPERIMENTAL RESULTS 
 

Figure 2 shows the results of the 3-hour 
simulations (without aerosols), with the WTD 
processor placed at the beginning and at the end of 
the group of allocated processors. 

Figure 2 shows the standard method performs 
better for a small number of processors. With more 
processors, there is not much difference between 
the standard and the dedicated WTD methods. In 
addition, using more than one dedicated WTD 
processor does not gain any additional 
performance.  Also placing the WTD processor at 
the end results in slightly better performance for the 
standard method but not for the dedicated WTD 
processor cases. 

Figure 3 shows the results of the 12-hour 
simulation with aerosols.  Comparing "stndw" to the 
"1-dwtd" since both have the same computational 
processor configuration, we see the "1-dwtd" case 
performs better than the "stndw" method as 
anticipated. However, the "stnd" method is better 
than the "1-dwtd" as we saw in the 3-hour run 
cases. Also, as in the 3-hour cases, it can be seen 
that using more than one dedicated WTD processor 
does not render any additional performance gain 
and that placing the WTD processor at the end 
results in slightly better performance for the 
standard method but not for the dedicated WTD 
processor cases. 

 
5. CONCLUSIONS AND FUTURE 
RESEARCH 
 

The dedicated WTD scheme with an m X n 
computational processor configuration performs 
slightly better than the standard method with an m 
X n configuration. However, if that dedicated WTD 
processor is part of the computational processors 
(no longer dedicated) in the standard method with 
an m' X n' processor configuration, where m' * n' = 
m * n + 1,  then a slightly better performance will 
result. If the computational portion of CMAQ 
becomes more intensive due to an increased 
problem size, e.g. larger domains, higher resolution, 
we would expect even better performance. 

We observed a significant load balance issue 
across the processors in these runs. Figures 4 and 
5 provide snapshots of minimum and maximum 
processor execution times of the science 
processes from the 12-hour runs. As expected, the 
absolute difference between the min and max gets 
smaller as the number of allocated processors 
increases. However, the load imbalance remains, 
and we believe that it will get worse with larger 
problem sizes. We will begin to focus more on this 
issue for future work. 

The IBM eServer p655+ on which the 
experiment was run has 8 CPU's per node (8-way). 



A regular Linux cluster is usually 2-way or 4-way. 
For such a platform, the latency of off module 
communication will be magnified, and the network 
bandwidth will be different than on the IBM. Since 
there is considerable interest in running CMAQ on 
Linux clusters, we will continue this study on such 
platforms. 

 
 

 
 
 

      

      
Figure 2: 3-hour simulation without aerosols with WTD processor(s) at the beginning(-0) and 
end (-1) of the processor group 

 
Figure 3: 12-hour simulation with aerosols with WTD processor(s) at the beginning (-0) and 
end (-1) of the processor group 



 
 
DISCLAIMER 
     The research presented here was performed 
under the Memorandum of Understanding between 
the U.S. Environmental Protection Agency (EPA) and 
the U.S. Department of Commerce’s National 
Oceanic and Atmospheric Administration (NOAA) 
and under agreement number DW13921548.  
Although it has been reviewed by EPA and NOAA 
and approved for publication, it does not necessarily 
reflect their policies or views. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 5: Min and max execution time with 13x5 
processor configuration 

 
Figure 4:Min and max execution time with 11x3 
processor configuration 


