
Computational Aspects of the Air Quality Forecasting Version of CMAQ (CMAQ-F)

 David C. Wong Jeffrey O. Young
Lockheed Martin Information Technology NOAA (on assignment to the EPA)

 Research Triangle Park, NC Research Triangle Park, NC
 wong.david-c@epa.gov young.jeff@epa.gov

1. INTRODUCTION

The air quality forecast version of the
Community Modeling Air Quality (CMAQ) model
(CMAQ-F) was developed from the public release
version of CMAQ (available from
http://www.cmascenter.org), and is running
operationally at the National Weather Service's
National Centers for Environmental Prediction
(NCEP). Most of the modifications to CMAQ focus
on tailoring the model's performance to the
operational hardware and the parallel computing
environment at NCEP and effectively managing the
parallel input and output (I/O) processes to achieve
scalability. This has been accomplished by
asynchronously overlapping computation with I/O
writing to disk (WTD) by a dedicated processor.

In this paper, we describe two different ways of
placing the WTD processor. Benchmark results
with regards to the WTD processor placement and
an extension to more than one WTD processor are
presented. In addition, a benchmark comparison
between the I/O implementation in the CMAQ-F and
the community version of CMAQ is provided.

2. I/O STRATEGY

In CMAQ, all processors perform computation.
At the end of each time step, output data is sent to
one of the computational processors as a WTD
processor, which then gathers and assembles data
and writes it. We will label this strategy, "stnd"
(standard).

CMAQ-F uses a dedicated WTD processor to
perform the output task, which gathers the data
from the computational processors and writes the
data to disk. We label this strategy, "dwtd"
(dedicated write to disk).

In either approach, there are two distinct
implementations: assign either the first or the last
processor from the allocated processor group to be
the WTD processor. The former choice is used
currently in both CMAQ and CMAQ-F.

Figure 1 depicts a scenario of allocating 9
processors on an IBM eServer p655+ system,
which has 8 CPU's on a node with two on a chip.
There are 8 processors that perform computation
and one, indicated in the darker color, is dedicated
for WTD. The logical view of the 8 computational
processors is shown in the middle of Figure 1. We
considered two physical mappings for the
placement of the WTD processor, as shown in
Figure 1.

 Figure 1 also shows interprocessor
communication, where dotted arrows indicate
communication in the y direction and red arrows in
the x direction. It is clear that with these two WTD
placement choices, there are different off-chip and
off-node communication pathways in the x and y
directions in CMAQ-F. For CMAQ, the first
processor usually has a higher work load than the
last processor because of the domain
decomposition is uneven. Therefore it would seem
to be advantageous to assign the last processor for
WTD.

3. DESCRIPTION OF EXPERIMENTAL

 Figure 1: Processor allocations and interprocessor
communication (top: WTD processor at beginning,
bottom: WTD processor at end)

 RUNS

 A set of experiments was conducted that
consists of six groups with various numbers of
processors and configurations. Each group consists
of four cases: 1) the standard (stnd) strategy; 2)
using the standard strategy but with the same
number of computational processors as the
dedicated WTD processor case (stndw); 3) a single
dedicated WTD processor case (1-dwtd), and 4)
with two dedicated processors (2-dwtd). Both WTD
processor placement schemes were applied to the
entire set of experiments. Table 1 summarizes the
processor configuration for each case. All runs were
conducted on EPA's IBM eServer during regular
operating conditions. The domain that was tested
covers the eastern half of the US. A 3-hour
simulation without aerosols, and a longer, 12-hour
simulation with aerosols were conducted. Results
are presented as an average of three separate runs.
(The 3-hour data for stndw are not presented.)

Table 1: Processor configuration of each run

Group stnd stndw 1-dwtd 2-dwtd
1 3x3 4x2 4x2+1 4x2+2
2 4x4 5x3 5x3+1 5x3+2
3 5x5 8x3 8x3+1 8x3+2
4 11x3 8x4 8x4+1 8x4+2
5 7x7 8x6 8x6+1 8x6+2
6 13x5 8x8 8x8+1 8x8+2

Performance is affected by domain

decomposition as can be seen in Table 2. However,
in this study, we did not attempt to account for
performance differences due to processor
configuration.

Table 2: Performance of a 3-hr simulation with
various configuration of 16 and 64 processors

PE conf. 1x16 2x8 4x4 8x2 16x1
Time (sec) 409.7 372.0 378.0 391.7 372.3

PE conf. 1x64 2x32 4x16 8x8 16x4 32x2 64x1

Time (sec) 333.3 236.0 241.3 241.0 227.3 217.0 224.3

4. EXPERIMENTAL RESULTS

Figure 2 shows the results of the 3-hour
simulations (without aerosols), with the WTD
processor placed at the beginning and at the end of
the group of allocated processors.

Figure 2 shows the standard method performs
better for a small number of processors. With more
processors, there is not much difference between
the standard and the dedicated WTD methods. In
addition, using more than one dedicated WTD
processor does not gain any additional
performance. Also placing the WTD processor at
the end results in slightly better performance for the
standard method but not for the dedicated WTD
processor cases.

Figure 3 shows the results of the 12-hour
simulation with aerosols. Comparing "stndw" to the
"1-dwtd" since both have the same computational
processor configuration, we see the "1-dwtd" case
performs better than the "stndw" method as
anticipated. However, the "stnd" method is better
than the "1-dwtd" as we saw in the 3-hour run
cases. Also, as in the 3-hour cases, it can be seen
that using more than one dedicated WTD processor
does not render any additional performance gain
and that placing the WTD processor at the end
results in slightly better performance for the
standard method but not for the dedicated WTD
processor cases.

5. CONCLUSIONS AND FUTURE
RESEARCH

The dedicated WTD scheme with an m X n
computational processor configuration performs
slightly better than the standard method with an m
X n configuration. However, if that dedicated WTD
processor is part of the computational processors
(no longer dedicated) in the standard method with
an m' X n' processor configuration, where m' * n' =
m * n + 1, then a slightly better performance will
result. If the computational portion of CMAQ
becomes more intensive due to an increased
problem size, e.g. larger domains, higher resolution,
we would expect even better performance.

We observed a significant load balance issue
across the processors in these runs. Figures 4 and
5 provide snapshots of minimum and maximum
processor execution times of the science
processes from the 12-hour runs. As expected, the
absolute difference between the min and max gets
smaller as the number of allocated processors
increases. However, the load imbalance remains,
and we believe that it will get worse with larger
problem sizes. We will begin to focus more on this
issue for future work.

The IBM eServer p655+ on which the
experiment was run has 8 CPU's per node (8-way).

A regular Linux cluster is usually 2-way or 4-way.
For such a platform, the latency of off module
communication will be magnified, and the network
bandwidth will be different than on the IBM. Since
there is considerable interest in running CMAQ on
Linux clusters, we will continue this study on such
platforms.

Figure 2: 3-hour simulation without aerosols with WTD processor(s) at the beginning(-0) and
end (-1) of the processor group

Figure 3: 12-hour simulation with aerosols with WTD processor(s) at the beginning (-0) and
end (-1) of the processor group

DISCLAIMER
 The research presented here was performed
under the Memorandum of Understanding between
the U.S. Environmental Protection Agency (EPA) and
the U.S. Department of Commerce’s National
Oceanic and Atmospheric Administration (NOAA)
and under agreement number DW13921548.
Although it has been reviewed by EPA and NOAA
and approved for publication, it does not necessarily
reflect their policies or views.

Figure 5: Min and max execution time with 13x5
processor configuration

Figure 4:Min and max execution time with 11x3
processor configuration

