

PERFORMANCE OF AQM APPLICATIONS ON COMMODITY LINUX PLATFORMS

George Delic *

HiPERiSM Consulting, LLC, Durham, NC
e-mail: george@hiperism.com

Web address: http://www.hiperism.com
Voice (919) 484-9803 Fax (919) 806-2813

1.0 INTRODUCTION

This is a progress report on a project to
evaluate industry standard fortran 90/95 compilers
for IA-32 Linux™ commodity platforms when
applied to Air Quality Models (AQM). The goal is
to determine the optimal performance and
workload though-put achievable with commodity
hardware. New results are presented for selected
benchmarks on Intel Pentium 4 Xeon processors.

2.0 CHOICE OF HARDWARE, OPERATING
SYSTEM, AND COMPILERS

The hardware used for the results reported
here is the Intel Pentium 4 Xeon (P4) processor
(3GHz, 1MB L3 cache) in a dual configuration on a
Super Micro SuperServer 6023P-i platform with
the Intel E7501 chipset. This configuration has
4GB of memory and a 533MHz System Bus
shared by both processors. Storage capacity is 1.5
TB on six ATA/IDE hard drives. The operating
system (OS) is HiPERiSM Consulting, LLC’s
modification of the Red Hat (RH) Linux™ 9.0 SMP
kernel. When combined with the Xeon HT
technology the RH SMP kernel shows four CPU’s
on the dual Xeon processors. Four compilers are
now available for this combination of hardware
and OS from Absoft (8.0), Intel (8.0), Lahey (6.2),
and The Portland Group, STMicroelectronics (5.1).
The Xeon architecture offers Streaming Single-
Instruction-Multiple-Data Extensions, SSE2, (SSE)
to enable vectorization of loops operating on
multiple elements in a data set with a single
operation. Three compilers specifically enable
SSE through a compiler switch and this has been
used in some tests. The wall clock time reported
here is obtained either from the Linux time
command or from calls to the Fortran 90/95
system_clock routine.

* Corresponding author address: George Delic,
HiPERiSM Consulting, LLC, P.O. Box 569, Chapel Hill,
NC 27514-0569

3.0 CHOICE OF BENCHMARKS

The choice of benchmarks includes three real-
world models: the Princeton Ocean Model (POM),
the MM5 modeling system Version 3 (MM5), and
the Comprehensive Air Quality Model with
Extensions (CAMx). The consequences for
performance as problem size scales is also
investigated for the POM.

For each compiler listed in the previous
section four sets of compiler switches are used: no
opt (all optimization disabled), opt (the default
switches with some optimization), vect
(vectorization enabled), and SSE (SSE2
instructions enabled). The exact description, and
the list of compiler switches used, is to be found at
HiPERiSM’s URL on Technical Reports pages
HCTR-2004-3 to HCTR-2004-6. While it is
expected that different compilers will deliver
different performance (as will different choices of
compiler switches), it is less clear what the
consequences of memory bandwidth limitations
may be. For this reason the analysis begins with
the STREAM memory bandwidth benchmark.

3.1 STREAM memory benchmark

It has been known for some time that
multiprocessor commodity hardware encounters
memory bandwidth bottle-necks when more than
one processor is active. Although only serial
applications are discussed here, this memory
bandwidth limitation affects both OpenMP and MPI
parallel applications. In the case of the hardware
described in the previous section, this limitation is
due to both processors sharing the memory
bandwidth of the common system bus. To
measure performance of memory bandwidth the
STREAM (Sustainable Memory Bandwidth)
benchmark has been used (for more information
see http://www.cs.virginia.edu/stream). Here the
results of the serial version of the STREAM
benchmark are presented with a view to
discovering differences in performance of this

group of compilers. The STREAM benchmark
consists of multiple repetitions of the four Kernels
in Table 3.1 and the best results of typically ten
trials are chosen. The iteration range of the loop is
chosen to range from 1 to 20x106 data points with
unit stride. Only the memory bandwidth is reported
here (in units of MB/second) and results are
presented without and with compiler optimizations.

Table 3.1 Compute kernels of the STREAM
benchmark (referenced by number in what
follows).
No. Name Kernel Bytes /

iterate
Flops /
iterate

1 COPY a(i)=b(i) 16 0
2 SCALE a(i)=q*b(i) 16 1
3 ADD a(i)=b(i)+c(i) 24 1
4 TRIAD a(i)=b(i)+q*c(i) 24 2

3.2 Princeton Ocean Model (POM)

The Princeton Ocean Model (POM) is a legacy
Fortran 77 code with compute kernels consisting
of over three hundred vectorizable loops. Typically
these are triple-nested loops (i,j,k) that perform
operations over a three-dimensional finite
difference grid. The vertical zones over the k
range form the outermost loop in the nest. The
number of iterations varies with the choice of data
set as shown in Table 3.2. The inner loop structure
presents compilers with good prospects for
vectorization.

Table 3.2 Problem sizes and scaling for the POM.

GRID imax jmax kmax Scaling
1 100 40 15 1
2 128 128 16 4.37
3 256 256 16 17.47

3.3 MM5

The MM5 Community Model has been
executed on a wide variety of platforms and
Version 3 is used here in serial mode for the
Storm-of-the-Century (SOC) benchmark with the
Portland and Intel compilers. The optimizations
applied are different for the two compilers so the
equivalence is not precise. For, example, the
equivalence in the vector group does not exist.
Whereas the pgf90 compiler allows separation of
vector and SSE instruction implementation, the
Intel compiler does not and the Intel vect entry is
left blank in what follows.

3.4 CAMx

The CAMx code developed by ENVIRON
(http://www.camx.com) is a Fortran 77 code for an
Eulerian photochemical model that is widely used
in the AQM community. This benchmark analysis
is concluded with some selected results for the
2000 episode from 8/22 to 8/31 in the Houston
Greater Metro area with the base5a.regular.GOES
base case for 2000 using the reported non-egu
emissions and the GOES-satellite correct
meteorology. Modeling files are obtainable from
the TCEQ site at
http://www.tnrcc.state.tx.us/air/aqp/
airquality_photomod.html#section4>
http://www.tnrcc.state.tx.us/air/aqp/
airquality_photomod.html#camx>

Results are presented for five groups of
compiler switches with the pgf90 compiler to
investigate the behavior of CAMx on the P4 Xeon
platform with this compiler. There is a requirement
for many simulations with CAMx and thus some
prior motivation exists for reducing wall clock time.

4.0 RESULTS OF BENCHMARKS

A fuller discussion of the benchmarks is found
at HiPERiSM’s URL on Technical Reports pages
HCTR-2004-3 to HCTR-2004-6. What follows is a
summary.

4.1 STREAM results

Tables 4.1 and 4.2, respectively, show memory
bandwidth results without and with optimization.

Table 4.1 Memory bandwidth (MB/second) for the
STREAM benchmarks with four compilers on the
Pentium 4 Xeon (3.06 GHz, 1MB L3 cache)
without optimization.

N Absoft Intel Lahey Portland
Copy 1252.27 1289.8 1077.44 1300.81
Scale 1252.32 1314.17 1138.79 1316.87
Add 1616.75 1651.76 1230.76 1655.17
Triad 1649.41 1650.05 1230.76 1666.67

In both tables Kernels 3 (Add) and 4 (Triad) show
the higher values because each has two memory
loads and one store compared to one of each for
the first two kernels. Different compilers can
produce different memory performance on the
same code. Particularly striking is the boost in
performance for the Intel compiler as

demonstrated in Figure 4.1 showing the ratio of
optimized to non-optimized bandwidth. Note that
since this is serial benchmark one process on a
dual Xeon node has a large performance boost
from the Intel compiler with optimization enabled.

Table 4.2 Memory bandwidth (MB/second) for the
STREAM benchmarks with four compilers on the
Pentium 4 Xeon (3.06 GHz, 1MB L3 cache) with
optimization.

N Absoft Intel Lahey Portland
Copy 1356.58 2677.82 1138.79 1322.31
Scale 1351.96 2675.59 1207.55 1327.8
Add 1660.76 2843.6 1227.62 1678.32
Triad 1662.69 2802.1 1230.77 1684.21

STREAM benchmark: optimized versus non-
optimized (single processor P4 Xeon 3 GHz)

0

0.5

1

1.5

2

2.5

1 2 3 4

Kernel

R
at

io
 o

f
ra

te
s:

 o
pt

im
iz

ed

to
 n

on
-o

pt
im

iz
ed

Absoft
Intel
Lahey
Portland

Fig. 4.1 Ratio of memory bandwidth of four
different compilers on the Pentium 4 Xeon for
results with and without compiler optimization for
the STREAM benchmark.

4.2 POM Results

For the Princeton Ocean Model whole code
execution was measured with calls to the Fortran
90/95 system_clock routine for all compilers.
Results with no SSE enabled are shown in Table
4.3 for the three problem sizes of Table 3.2. For
the largest problem size the Lahey compiler is
noticeably less efficient than the others and this is
due to the requirement of the --long option for
large integers.

The gain in performance when SSE is enabled
is shown in Figure 4.2 for the three compilers that
have switches for SSE. The precise performance
gain for each compiler is shown in Table 4.4. This
shows the relative gain (SSE versus no SSE) as a
percentage, for each of the three problem sizes.

Table 4.3 Execution times (seconds) for the POM
algorithm with four compilers on the Pentium 4
Xeon (3.06 MHz, 1MB L3 cache) without SSE
enabled.

GRID Absoft Intel Lahey Portland
1 167.7 156.1 189.5 190.1
2 1925.9 1518.9 2809.7 1756.7
3 8685.2 7432.3 12731.8 8764.8

POM Floating Point Algorithm (P4 Xeon 3GHz)

0

2000

4000

6000

8000

10000

12000

1 2 3

GRID

W
al

l t
im

e
(s

ec
on

ds
)

Intel
Intel (SSE2)
Lahey
Lahey (SSE2)
Portland
Portland (SSE)

Fig. 4.2 Execution times of three compilers for the
POM floating point algorithm without and with
SSE enabled on the Pentium 4 Xeon.

Table 4.4 Percentage gain in execution times for
the POM algorithm with three compilers when
SSE/SSE2 is enabled.

GRID Intel Lahey Portland
1 1.2 -0.3 11.2
2 25.5 10.3 27.6
3 31.5 6.7 29.8

The largest gains in performance are for the
largest problem size, where it is clear from Fig.4.2,
that the Intel compiler delivers the best
performance once SSE is enabled.

4.3 MM5 Results

For MM5 whole code execution was measured
with the Linux time command for both the Intel and
Portland compilers and relative performance is
compared in Figure 4.3. As a base-line the noopt
group disables all optimization for either compiler
and there is a clear improvement in performance
when the opt group of switches is used (with –O2).
However, there is no exact equivalence between
the two compilers for the vector group of switches
because the pgf90 compiler allows separation of

vector and SSE instruction implementation,
whereas the Intel compiler does not (and therefore
the Intel entry is left blank). For the baseline, with
the noopt choice, the Intel compiler lags pgf90, but
the situation is reversed for the opt group of
switches where the Intel compiler delivers a 20.5%
smaller elapsed time. However, the largest
difference between the two compilers is for the
SSE group of switches, where the Intel compiler
delivers a 33.8% smaller elapsed time. It is clear
that the Intel compiler delivers the best
performance once SSE is enabled.

Serial MM5 v3 for Storm of the Century
benchmark (P4 Xeon 3 GHz)

0
100
200
300
400
500
600
700
800
900

1000
1100

1 2

Case 1: pgf90 (5.1), Case 2: ifort (8.0)

W
al

l t
im

e
(s

ec
on

ds
)

noopt
opt
vector
SSE

Fig. 4.3 Elapsed time for MM5 with the SOC
benchmark for the Portland 5.1 (Case 1), and Intel
8.0 (Case 2) compilers.

4.4 CAMx Results

Only the pgf90 (5.1) compiler was used in this
benchmark with five groups of optimization
switches similarly to what was done in the POM
and MM5 cases. Whole code execution was
measured with the time command for the results of
the TCEQ 2000 Mid-course Review Scenario for
the SIP with an episode from 8/22 to 8/31 in the
Houston Greater Metro area. Results are
presented in Figure 4.4. The grouping of switches
is: noopt (-O0), opt (-O2), vect (-fast –Mvect), SSE
(-fast –Mvect=sse), and FSSE (-fastsse). The
remaining switches used where: -tp p7 –pc 64 –
Mdalign –Mextend -Mnoframe –Mlfs –byteswapio
–Wl, -Bstatic. The results of this analysis are
remarkable in that this increasing hierarchy of
optimizations resulted in no noticeable reduction in
wall clock time. This suggests that CAMx is a
scalar dominated code that received none of the
benefits of this architecture such as vector
pipelining, cache, and SSE2 instruction sets with a

compiler that has been shown to enable such
benefits on vectorizable code (e.g. POM, MM5).

CAMx for HGMCR (P4 Xeon, pgf90)

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

8/2
2/0

0
8/2

3/0
0

8/2
4/0

0
8/2

5/0
0

8/2
6/0

0

8/2
7/0

0
8/2

8/0
0

8/2
9/0

0
8/3

0/0
0

8/3
1/0

0

Scenario day

W
al

l t
im

e
(s

ec
on

ds
)

noopt
opt
vect
SSE
FSSE

Fig. 4.4 Elapsed time for the CAMx benchmark
with the Portland 5.1 compiler for five compiler
optimization choices.

5.0 CONCLUSIONS

Performance results of four fortran compilers
on the Intel Pentium 4 Xeon were presented. For
such commodity hardware memory bandwidth is
known to be one of the principle performance
bottle-necks with consequences for large problem
sizes. The STREAM benchmark showed an
exceptional bandwidth enhancement for the Intel
compiler when optimizations are enabled.

Wall clock time was also measured for three

fortran codes used in ocean, atmospheric, and
environmental models: POM, MM5 and CAMx. A
fundamental result is that models developed to
effectively utilize vector register architectures, also
receive very significant performance boosts from
optimization and SSE2 instructions on cache-
based commodity hardware. This was observed to
be the case for all compilers with switches to
enable SSE2 instructions. Performance gains
(with SSE2 enabled) increased steadily with
increasing problem size, to reach ~30% (POM),
and differences ~34% were observed in
performance between compilers (MM5). The
exceptionally poor performance of CAMx suggests
a redesign of the code is advisable if performance
improvement on commodity hardware is desired.

The author gratefully acknowledges the
willingness of Dr. Harvey Jeffries and his Ph.D.
student, Byeong-Uk Kim, to share the UT/UNC
version of CAMx and for help on how to use it.

