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1.0  INTRODUCTION 
 

This is a progress report on a project to 
evaluate industry standard fortran 90/95 compilers 
for IA-32 Linux™ commodity platforms when 
applied to Air Quality Models (AQM). The goal is 
to determine the optimal performance and 
workload though-put achievable with commodity 
hardware. New results are presented for selected 
benchmarks on Intel Pentium 4 Xeon processors.  
 
2.0 CHOICE OF HARDWARE, OPERATING 
SYSTEM, AND COMPILERS 
 

The hardware used for the results reported 
here is the Intel Pentium 4 Xeon (P4) processor 
(3GHz, 1MB L3 cache) in a dual configuration on a 
Super Micro SuperServer 6023P-i platform with 
the Intel E7501 chipset. This configuration has 
4GB of memory and a 533MHz System Bus 
shared by both processors. Storage capacity is 1.5 
TB on six ATA/IDE hard drives. The operating 
system (OS) is HiPERiSM Consulting, LLC’s 
modification of the Red Hat (RH) Linux™ 9.0 SMP 
kernel. When combined with the Xeon HT 
technology the RH SMP kernel shows four CPU’s 
on the dual Xeon processors. Four compilers are 
now available for this combination of hardware 
and OS from Absoft (8.0), Intel (8.0), Lahey (6.2), 
and The Portland Group, STMicroelectronics (5.1).  
The Xeon architecture offers Streaming Single-
Instruction-Multiple-Data Extensions, SSE2, (SSE) 
to enable vectorization of loops operating on 
multiple elements in a data set with a single 
operation. Three compilers specifically enable 
SSE through a compiler switch and this has been 
used in some tests. The wall clock time reported 
here is obtained either from the Linux time 
command or from calls to the Fortran 90/95 
system_clock routine. 
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3.0 CHOICE OF BENCHMARKS 
 

The choice of benchmarks includes three real-
world models: the Princeton Ocean Model (POM), 
the MM5 modeling system Version 3 (MM5), and 
the Comprehensive Air Quality Model with 
Extensions (CAMx). The consequences for 
performance as problem size scales is also 
investigated for the POM.  

For each compiler listed in the previous 
section four sets of compiler switches are used: no 
opt (all optimization disabled), opt (the default 
switches with some optimization), vect 
(vectorization enabled), and SSE (SSE2 
instructions enabled). The exact description, and 
the list of compiler switches used, is to be found at 
HiPERiSM’s URL on Technical Reports pages 
HCTR-2004-3 to HCTR-2004-6. While it is 
expected that different compilers will deliver 
different performance (as will different choices of 
compiler switches), it is less clear what the 
consequences of memory bandwidth limitations 
may be. For this reason the analysis begins with 
the STREAM memory bandwidth benchmark. 
 
3.1 STREAM memory benchmark 
 

It has been known for some time that 
multiprocessor commodity hardware encounters 
memory bandwidth bottle-necks when more than 
one processor is active. Although only serial 
applications are discussed here, this memory 
bandwidth limitation affects both OpenMP and MPI 
parallel applications. In the case of the hardware 
described in the previous section, this limitation is 
due to both processors sharing the memory 
bandwidth of the common system bus.  To 
measure performance of memory bandwidth the 
STREAM (Sustainable Memory Bandwidth) 
benchmark has been used (for more information 
see http://www.cs.virginia.edu/stream). Here the 
results of the serial version of the STREAM 
benchmark are presented with a view to 
discovering differences in performance of this 



group of compilers. The STREAM benchmark 
consists of multiple repetitions of the four Kernels 
in Table 3.1 and the best results of typically ten 
trials are chosen. The iteration range of the loop is 
chosen to range from 1 to 20x106 data points with 
unit stride. Only the memory bandwidth is reported 
here (in units of MB/second) and results are 
presented without and with compiler optimizations. 

 
Table 3.1 Compute kernels of the STREAM 
benchmark  (referenced by number in what 
follows). 
No. Name Kernel Bytes / 

iterate 
Flops / 
iterate 

1 COPY a(i)=b(i) 16 0 
2 SCALE a(i)=q*b(i) 16 1 
3 ADD a(i)=b(i)+c(i) 24 1 
4 TRIAD a(i)=b(i)+q*c(i) 24 2 

 
 
3.2 Princeton Ocean Model  (POM) 
 

The Princeton Ocean Model (POM) is a legacy 
Fortran 77 code with compute kernels consisting 
of over three hundred vectorizable loops. Typically 
these are triple-nested loops (i,j,k) that perform 
operations over a three-dimensional finite 
difference grid. The vertical zones over the k 
range form the outermost loop in the nest. The 
number of iterations varies with the choice of data 
set as shown in Table 3.2. The inner loop structure 
presents compilers with good prospects for 
vectorization. 
 
 

Table 3.2 Problem sizes and scaling for the POM. 
 

GRID imax  jmax kmax  Scaling 
1 100 40 15 1 
2 128 128 16 4.37 
3 256 256 16 17.47 

 
 
3.3 MM5 
 

The MM5 Community Model has been 
executed on a wide variety of platforms and 
Version 3 is used here in serial mode for the 
Storm-of-the-Century (SOC) benchmark with the 
Portland and Intel compilers. The optimizations 
applied are different for the two compilers so the 
equivalence is not precise. For, example, the 
equivalence in the vector group does not exist. 
Whereas the pgf90 compiler allows separation of 
vector and SSE instruction implementation, the 
Intel compiler does not and the Intel vect entry is 
left blank in what follows. 

 
3.4 CAMx 
 

The CAMx code developed by ENVIRON 
(http://www.camx.com) is a Fortran 77 code for an 
Eulerian photochemical model that is widely used 
in the AQM community. This benchmark analysis 
is concluded with some selected results for the 
2000 episode from 8/22 to 8/31 in the Houston 
Greater Metro area with the base5a.regular.GOES  
base case for 2000 using the reported non-egu 
emissions and the GOES-satellite correct 
meteorology.  Modeling files are obtainable from 
the TCEQ site at 
http://www.tnrcc.state.tx.us/air/aqp/
airquality_photomod.html#section4> 
http://www.tnrcc.state.tx.us/air/aqp/
airquality_photomod.html#camx> 

Results are presented for five groups of 
compiler switches with the pgf90 compiler to 
investigate the behavior of CAMx on the P4 Xeon 
platform with this compiler. There is a requirement 
for many simulations with CAMx and thus some 
prior motivation exists for reducing wall clock time. 
 
4.0 RESULTS OF BENCHMARKS 
 

A fuller discussion of the benchmarks is found 
at HiPERiSM’s URL on Technical Reports pages 
HCTR-2004-3 to HCTR-2004-6. What follows is a 
summary. 
 
4.1 STREAM results 
 
Tables 4.1 and 4.2, respectively, show memory 
bandwidth results without and with optimization.  
 
 

Table 4.1 Memory bandwidth (MB/second) for the 
STREAM benchmarks with four compilers on the 
Pentium 4 Xeon (3.06 GHz, 1MB L3 cache) 
without optimization. 
 

N Absoft Intel Lahey Portland 
Copy 1252.27 1289.8 1077.44 1300.81 
Scale 1252.32 1314.17 1138.79 1316.87 
Add 1616.75 1651.76 1230.76 1655.17 
Triad 1649.41 1650.05 1230.76 1666.67 
 
In both tables Kernels 3 (Add) and 4 (Triad) show 
the higher values because each has two memory 
loads and one store compared to one of each for 
the first two kernels. Different compilers can 
produce different memory performance on the 
same code. Particularly striking is the boost in 
performance for the Intel compiler as 



demonstrated in Figure 4.1 showing the ratio of 
optimized to non-optimized bandwidth. Note that 
since this is serial benchmark one process on a 
dual Xeon node has a large performance boost 
from the Intel compiler with optimization enabled. 
 
 

Table 4.2 Memory bandwidth (MB/second) for the 
STREAM benchmarks with four compilers on the 
Pentium 4 Xeon (3.06 GHz, 1MB L3 cache) with 
optimization. 
 

N Absoft Intel Lahey Portland 
Copy 1356.58 2677.82 1138.79 1322.31 
Scale 1351.96 2675.59 1207.55 1327.8 
Add 1660.76 2843.6 1227.62 1678.32 
Triad 1662.69 2802.1 1230.77 1684.21 
 

STREAM benchmark: optimized versus non-
optimized (single processor P4 Xeon 3 GHz)
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Fig. 4.1 Ratio of memory bandwidth of four 
different compilers on the Pentium 4 Xeon for 
results with and without compiler optimization for 
the STREAM benchmark. 
 
 
4.2 POM Results 
 

For the Princeton Ocean Model whole code 
execution was measured with calls to the Fortran 
90/95  system_clock routine for all compilers. 
Results with no SSE enabled are shown in Table 
4.3 for the three problem sizes of Table 3.2. For 
the largest problem size the Lahey compiler is 
noticeably less efficient than the others and this is 
due to the requirement of the --long option for 
large integers. 
 

The gain in performance when SSE is enabled 
is shown in Figure 4.2 for the three compilers that 
have switches for SSE. The precise performance 
gain for each compiler is shown in Table 4.4. This 
shows the relative gain (SSE versus no SSE) as a 
percentage, for each of the three problem sizes. 

 

 
 

Table 4.3 Execution times (seconds) for the POM 
algorithm with four compilers on the Pentium 4 
Xeon (3.06 MHz, 1MB L3 cache) without SSE 
enabled. 
 

GRID Absoft Intel Lahey Portland 
1 167.7 156.1 189.5 190.1 
2 1925.9 1518.9 2809.7 1756.7 
3 8685.2 7432.3 12731.8 8764.8 

 

POM Floating Point Algorithm (P4 Xeon 3GHz)
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Fig. 4.2 Execution times of three compilers for the 
POM floating point algorithm without and with 
SSE enabled on the Pentium 4 Xeon. 
 
 

Table 4.4 Percentage gain in execution times for 
the POM algorithm with three compilers when 
SSE/SSE2 is enabled. 
 

GRID Intel Lahey Portland 
1 1.2 -0.3 11.2 
2 25.5 10.3 27.6 
3 31.5 6.7 29.8 

 
The largest gains in performance are for the 
largest problem size, where it is clear from Fig.4.2, 
that the Intel compiler delivers the best 
performance once SSE is enabled. 
 
4.3 MM5 Results 
 
For MM5 whole code execution was measured 
with the Linux time command for both the Intel and 
Portland compilers and relative performance is 
compared in Figure 4.3. As a base-line the noopt 
group disables all optimization for either compiler 
and there is a clear improvement in performance 
when the opt group of switches is used (with –O2). 
However, there is no exact equivalence between 
the two compilers for the vector group of switches 
because the pgf90 compiler allows separation of 



vector and SSE instruction implementation, 
whereas the Intel compiler does not (and therefore 
the Intel entry is left blank). For the baseline, with 
the noopt choice, the Intel compiler lags pgf90, but 
the situation is reversed for the opt group of 
switches where the Intel compiler delivers a 20.5% 
smaller elapsed time.  However, the largest 
difference between the two compilers is for the 
SSE group of switches, where the Intel compiler 
delivers a 33.8% smaller elapsed time. It is clear 
that the Intel compiler delivers the best 
performance once SSE is enabled. 
 

Serial MM5 v3 for Storm of the Century 
benchmark (P4 Xeon 3 GHz)
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Fig. 4.3 Elapsed time for MM5 with the SOC 
benchmark for the Portland 5.1 (Case 1), and Intel 
8.0 (Case 2) compilers. 
 
 
4.4 CAMx Results 
 

Only the pgf90 (5.1) compiler was used in this 
benchmark with five groups of optimization 
switches similarly to what was done in the POM 
and MM5 cases. Whole code execution was 
measured with the time command for the results of 
the TCEQ 2000 Mid-course Review Scenario for 
the SIP with an episode from 8/22 to 8/31 in the 
Houston Greater Metro area. Results are 
presented in Figure 4.4. The grouping of switches 
is: noopt (-O0), opt (-O2), vect (-fast –Mvect), SSE 
(-fast –Mvect=sse), and FSSE (-fastsse). The 
remaining switches used where: -tp p7 –pc 64 –
Mdalign –Mextend -Mnoframe –Mlfs –byteswapio 
–Wl, -Bstatic. The results of this analysis are 
remarkable in that this increasing hierarchy of 
optimizations resulted in no noticeable reduction in 
wall clock time. This suggests that CAMx is a 
scalar dominated code that received none of the 
benefits of this architecture such as vector 
pipelining, cache, and SSE2 instruction sets with a 

compiler that has been shown to enable such 
benefits on vectorizable code (e.g. POM, MM5). 

 

CAMx for HGMCR (P4 Xeon, pgf90)
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Fig. 4.4 Elapsed time for the CAMx benchmark 
with the Portland 5.1 compiler for five compiler 
optimization choices. 
 
5.0 CONCLUSIONS 
 

Performance results of four fortran compilers 
on the Intel Pentium 4 Xeon were presented. For 
such commodity hardware memory bandwidth is 
known to be one of the principle performance 
bottle-necks with consequences for large problem 
sizes. The STREAM benchmark showed an 
exceptional bandwidth enhancement for the Intel 
compiler when optimizations are enabled.  

 
Wall clock time was also measured for three 

fortran codes used in ocean, atmospheric, and 
environmental models: POM, MM5 and CAMx. A 
fundamental result is that models developed to 
effectively utilize vector register architectures, also 
receive very significant performance boosts from 
optimization and SSE2 instructions on cache-
based commodity hardware. This was observed to 
be the case for all compilers with switches to 
enable SSE2 instructions. Performance gains 
(with SSE2 enabled) increased steadily with 
increasing problem size, to reach ~30% (POM), 
and differences ~34% were observed in 
performance between compilers (MM5). The 
exceptionally poor performance of CAMx suggests 
a redesign of the code is advisable if performance 
improvement on commodity hardware is desired. 
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