NEW UNBIASED SYMMETRIC METRICS FOR EVALUATION OF THE AIR QUALITY MODEL

Shaocai Yu^{*}, Brian Eder^{*++}, Robin Dennis^{*++}, Shao-hang Chu^{*+}, Stephen Schwartz^{***} *Atmospheric Sciences Modeling Division National Exposure Research Laboratory, ** Office of Air Quality Planning and Standards, U.S. EPA, NC 27711 *** Atmospheric Sciences Division, Brookhaven National Laboratory, Upton, NY 11973 e-mail: **yu.shaocai@epa.gov** Voice (919) 541-0362 Fax (919) 541-137

1. INTRODUCTION

Although the operational evaluations for different air quality models have been intensively performed for regulatory purposes in the past years, the resulting array of statistical metrics are so diverse and numerous that it is difficult to judge the overall performance of the models. Some statistical metrics can cause misleading conclusions about the model performance. In this paper, a new set of unbiased symmetric metrics for the operational evaluation is proposed and applied in real evaluation cases.

2.0 QUANTITATIVE METRICS RELATED TO THE OPERATIONAL EVALUATION AND THEIR EXAMINATIONS

There are a lot of debates on how to present the relative differences between the model and observations. The traditional metrics (such as mean normalized bias (M_{NB}) , mean normalized gross error (M_{NGE}), normalized mean bias (N_{MB}) and normalized mean error (N_{MF}) , see Table 1) used in past model performance evaluations have generally used the observations to normalize the bias and error. There are two problems that may mislead conclusions with this approach, i.e., (1) the values of M_{NB} and N_{MB} can grow disproportionately for overpredictions and underpredicitons because both values of M_{NB} and N_{MB} are bounded by -100% for underprediction; (2) the values of M_{NB} and M_{NGE} can be significantly influenced by some points with trivially low values of observations (denomination).

In this study, we propose new metrics to solve the symmetrical problem between overprediction and underprediction following the concept of factor. Theoretically, factor is defined as ratio of model prediction to observation if the model prediction is higher than the observation, whereas it is defined as ratio of observation to model prediction if the observation is higher than the model prediction. Following this concept, the mean normalized factor bias (M_{NFB}), mean normalized gross factor error (M_{NGFE}), normalized mean bias factor (N_{MBF}) and normalized mean error factor (N_{MEF}) are proposed and defined as follows:

$$\begin{split} M_{NFB} &= \frac{1}{N} \sum_{i=1}^{N} F_{i}, \\ \text{where } F_{i} &= \left(\frac{M_{i}}{O_{i}} - 1.0\right) \text{ if } M_{i} \geq O_{i}, \\ F_{i} &= \left(1.0 - \frac{O_{i}}{M_{i}}\right) \text{ if } M_{i} < O_{i} \qquad (1) \\ M_{NGFE} &= \frac{1}{N} \sum_{i=1}^{N} |F_{i}|, \\ \text{where } F_{i} &= \left(\frac{M_{i}}{O_{i}} - 1.0\right) \text{ if } M_{i} \geq O_{i}, \end{split}$$

$$F_i = (1.0 - \frac{O_i}{M_i}) \text{ if } M_i < O_i$$
 (2)

If $\overline{M} \ge \overline{O}$

$$N_{MBF} = (\frac{\sum_{i=1}^{N} M_i}{\sum_{i=1}^{N} O_i} - 1) = \frac{\sum_{i=1}^{N} (M_i - O_i)}{\sum_{i=1}^{N} O_i} = (\frac{\overline{M}}{\overline{O}} - 1)$$

If $\overline{M} < \overline{O}$

⁺⁺ On assignment from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce

$$N_{MBF} = (1 - \frac{\sum_{i=1}^{N} O_i}{\sum_{i=1}^{N} M_i}) = \frac{\sum_{i=1}^{N} (M_i - O_i)}{\sum_{i=1}^{N} M_i} = (1 - \frac{\overline{O}}{\overline{M}})$$

(3)

$$N_{MEF} = \frac{\sum_{i=1}^{N} |M_i - O_i|}{\sum_{i=1}^{N} O_i} = \frac{M_{AGE}}{\overline{O}}, \text{ if } \overline{M} \ge \overline{O},$$
$$= \frac{\sum_{i=1}^{N} |M_i - O_i|}{\sum_{i=1}^{N} M_i} = \frac{M_{AGE}}{\overline{M}}, \text{ if } \overline{M} < \overline{O},$$
(4)

where M_i and O_i are values of model (prediction) and observation at time and/or location *i*, respectively, N is number of samples (by time and/or location). The values of M_{NFB} , and N_{MBF} are linear and not bounded (range from $-\infty$ to $+\infty$). Like M_{NB} and M_{NGE} , M_{NFB} and M_{NGFE} can have another general problem when some observation values (denomination) are trivially low and they can significantly influence the values of those metrics. N_{MBF} and N_{MEF} can avoid this problem because the sum of the observations is used to normalize the bias and error,. The above formulas

of N_{MBF} and N_{MEF} can be rewritten for $\overline{M} \ge \overline{O}$ case as follows:

$$N_{MBF} = \frac{\sum_{i=1}^{N} M_{i}}{\sum_{i=1}^{N} O_{i}} - 1 = \frac{\sum_{i=1}^{N} (M_{i} - O_{i})}{\sum_{i=1}^{N} O_{i}}$$

$$= \sum_{i=1}^{N} \left[\frac{O_{i}}{\sum_{i=1}^{N} O_{i}} \frac{(M_{i} - O_{i})}{O_{i}}\right]$$

$$N_{MEF} = \frac{\sum_{i=1}^{N} |M_{i} - O_{i}|}{\sum_{i=1}^{N} O_{i}}$$

$$= \sum_{i=1}^{N} \left[\frac{O_{i}}{\sum_{i=1}^{N} O_{i}} \frac{|M_{i} - O_{i}|}{O_{i}}\right]$$
(5)
(6)

The above two equations show that N_{MBF} and N_{MEF} are actually the results of summaries of

normalized bias (M_{NB}) and error (M_{NGE}) with the observational concentrations as a weighting function, respectively. N_{MBF} and N_{MEF} have both advantages of avoiding dominance by the low values of observations in normalization like N_{MB} and N_{ME} and maintaining adequate evaluation symmetry like fractional bias (F_B) and fractional gross error (F_{GE}) (see Table 1). Although F_B and F_{GE} can solve the symmetrical problem between overprediction and underprediction, what the metrics F_B and F_{GE} measure is not clear because the model prediction is not evaluated against observation but average of observation and model prediction. In addition, the scales of F_B and F_{GE} are not linear and are seriously compressed beyond ± 1 as F_B and F_{GE} are bounded by ± 2 and +2, respectively. The meanings of N_{MBF} and N_{MEF} are also very clear. The meanings of N_{MBF} can be interpreted as follows: if $N_{MBF} \ge 0$, for example, N_{MBF} =1.2, this means that the model overpredicts the observation by a factor of 2.2 (i.e., N_{MBF} +1=1.2+1=2.2); if N_{MBF} <0, for example, N_{MBF} =-0.2, this means that the model underpredicts the observation by a factor of 1.2 (i.e., N_{MBF}-1=-0.2-1=-1.2).

To test the reliabilities of other quantitative metrics listed in Table 1 and newly proposed metrics, a dataset for a real case of model and observation for aerosol NO3⁻ was separated into four regions as shown in Figure 1, i.e., region 1 for model/observation<0.5, region 2 for 0.5≤model/observation≤1.0, region 3 for 1.0<model/observation <2.0 and region 4 for 2.0<model/observation. Then, each metric in Table 1 was applied to different combinations of data in each region of Figure 1. As shown in Table 2, for the only data in region 1 with model/observation<0.5, i.e., the model underpredicted all observations by more than a factor of 2, M_{NB}, N_{MB}, F_B, N_{MFB}, M_{NFB} and N_{MBF} are -0.82, -0.78, -1.43, -1.28, -36.67, and -3.58, respectively. Obviously, only normalized mean bias factor (N_{MBF}) gives reasonable description of model performance, i.e., the model underpredicted the observations by a factor of 4.58 in this case. For the only data in region 4 with model/observation>2 (combination 4 in Table 2), M_{NB} , N_{MB} , F_B , N_{MFB} , M_{NFB} and N_{MBF} are 4.27, 2.25, 1.12, 1.06, 4.27 and 2.25, respectively. The results of N_{MBF} and N_{MB} reasonably indicate that the model overpredicted the observations by a factor of 3.25.

For the results of each metrics on combination case of regions 1 and 4 data in Figure 1 (i.e., 1+4 case in Table 2). M_{NB} , N_{MB} , F_B , N_{MFB} , M_{NFB} and

N_{MBF} are 1.50, 0.06, -0.27, 0.06, -18.02 and 0.06, respectively. Both N_{MB} and N_{MBF} show that the model slightly overpredicted the observations by a factor of 1.06, while F_B (-0.27) shows that the model underpredicted the observations. This shows that the value of F_B can sometimes result in a misleading conclusion as well. This specific case shows that it is not wise to use F_B as an evaluation metric. Although the model mean (1.54 μ g m⁻³) is close to that of observation (1.45 μ g m⁻³)), both N_{ME} and N_{MEF} (both of them are equal to 1.19 in Table 2) show that gross error between observations and model results is 1.19 times of mean observation. The calculation results of combination case 1+4 indicate that the good model performance can be concluded only under the condition that both relative bias (N_{MBF}) and relative gross error (N_{MFF}) meet the certain performance standards (or criteria). For the all data in Figure 1 (combination case 1+2+3+4 in Table 2), M_{NB} , N_{MB} , F_B , N_{MFB} , M_{NFB} and N_{MBF} are 0.96, 0.09, -0.13, 0.09, -10.75 and 0.09, respectively. Both N_{MB} and N_{MBF} show that the mean model only overpredicted the mean observation by a factor of 1.09. However, the gross error (N_{MGE}) between the model and observation is 0.77 times as high as observation. The scatter plot of Figure 1 also shows the large scatter between model and observation.

On the basis of the above analyses and test, it can be concluded that our proposed new statistical metrics (i.e., N_{MBF} and N_{MEF}) on the basis of concept of factor can show the model performance reasonably with advantages of both avoidance of domination by the low values of observations and symmetry. These new metrics use observational data as only reference for the model evaluation and their meanings are also very clear and easy to explain.

3.0 APPLICATIONS OF NEW METRICS OVER THE US

The newly proposed metrics have been applied to evaluate performance of the US EPA Models-3/Community Mutiscale Air Quality (CMAQ) model system on PM_{2.5} SO₄²⁻ and NO₃⁻ over the US. The test periods are from June 15 to July 17, 1999 and January 8 to February 18, 2002. As shown in Table 3, both N_{MBF} (0.03 to 0.08) and N_{MEF} (0.24 to 0.27) for weekly data of SO₄²⁻ from CASTNet are lower than those of 24-hour data from IMPROVE, SEARCH and STN (N_{MBF} =-0.19 to 0.22, and N_{MEF} =0.42 to 0.46). For PM_{2.5} NO₃⁻, both N_{MBF} (-0.96 to 0.59) and N_{MEF} (0.80 to 1.70) for SEARCH, CASTNet, and IMPROVE data in 1999 and 2002 are larger. Figure 3 shows that there are large scatter between modeled and observed NO_3^- . More efforts in model development for simulating aerosol NO_3^- are needed in future.

radier. Summary of traditional metrics	Table1.	Summary	of	traditional	metrics
--	---------	---------	----	-------------	---------

Metrics	Mathematical Expression
(1) Mean	
Correlation coefficient	$r = \frac{\sum_{i=1}^{N} (M_i - \overline{M})(O_i - \overline{O})}{\{\sum_{i=1}^{N} (M_i - \overline{M})^2 \sum_{i=1}^{N} (O_i - \overline{O})^2\}^{\frac{1}{2}}}$
(2) Difference	
Mean Bias	$M_{B} = \frac{1}{N} \sum_{i=1}^{N} (M_{i} - O_{i}) = \overline{M} - \overline{O}$
Mean Absolute Gross Error	$\boldsymbol{M}_{AGE} = rac{1}{N}\sum_{i=1}^{N} \left \boldsymbol{M}_{i} - \boldsymbol{O}_{i}\right $
Root Mean Square Error	$R_{MSE} = \left[\frac{1}{N} \sum_{i=1}^{N} (M_i - O_i)^2\right]^{\frac{1}{2}}$
(3) Relative difference	
Mean Normalized Bias	$M_{NB} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{M_i - O_i}{O_i}\right) \times 100\% = \left(\frac{1}{N} \sum_{i=1}^{M} \frac{M_i}{O_i} - 1\right) \times 100\%$
Mean Normalized Gross Erro	$\mathbf{r} M_{NGE} = \frac{1}{N} \sum_{i=1}^{N} (\frac{ M_i - O_i }{O_i}) \times 100\%$
Normalized Mean Bias	$N_{MB} = \frac{\sum_{i=1}^{N} (M_i - O_i)}{\sum_{i=1}^{N} O_i} \times 100\% = (\frac{\overline{M}}{\overline{O}} - 1) \times 100\%$
Normalized Mean Error	$N_{ME} = \frac{\sum_{i=1}^{N} M_i - O_i }{\sum_{i=1}^{N} O_i} \times 100\% = \frac{M_{AGE}}{\overline{O}} \times 100\%$
Fractional Bias	$F_{B} = \frac{1}{N} \sum_{i=1}^{N} \frac{(M_{i} - O_{i})}{(M_{i} + O_{i})}$
Fractional Gross Error	$F_{GE} = \frac{1}{N} \sum_{i=1}^{N} \frac{ M_i - O_i }{(M_i + O_i)}$

* $\overline{M} = \frac{1}{N} \sum_{i=1}^{N} M_i$, $\overline{O} = \frac{1}{N} \sum_{i=1}^{N} O_i$, M_i and O_i are values of model (prediction) and observation at L respectively. N is number of samples (by time and/or location).

Table 2. Results of different metrics in Table 1 for different combinations of dataset in Figure 1.

Combination	* 1	2	3	4	1+3	1+4	2+3	2+4	1+2+3+4
\overline{o}	1.92	2.15	2.11	0.88	2.00	1.45	2.13	1.36	1.72
\overline{M}	0.42	1.58	2.94	2.88	1.49	1.54	2.39	2.39	1.88
N	903	450	663	755	1566	1658	1113	1205	2771
r	0.79	0.97	0.97	0.90	0.54	0.32	0.90	0.63	0.51
Difference									
MB	-1.50	-0.57	0.83	1.99	-0.52	0.09	0.26	1.04	0.16
MAGE	1.50	0.57	0.83	1.99	1.22	1.73	0.72	1.46	1.32
R _{MSE}	4.25	1.07	1.29	2.70	3.33	3.62	1.20	2.23	2.91
Relative Diff	erence								
M _{NB}	-0.82	-0.27	0.43	4.27	-0.29	1.50	0.14	2.57	0.96
MNGE	0.82	0.27	0.43	4.27	0.65	2.39	0.36	2.78	1.58
N _{MB}	-0.78	-0.26	0.39	2.25	-0.26	0.06	0.12	0.76	0.09
N _{ME}	0.78	0.26	0.39	2.25	0.61	1.19	0.34	1.07	0.77
FB	-1.43	-0.33	0.33	1.12	-0.68	-0.27	0.06	0.58	-0.13
F_{GE}	1.43	0.33	0.33	1.12	0.96	1.29	0.33	0.83	0.90
M _{NFB}	-36.67	-0.43	0.43	4.27	-20.96	-18.02	80.0	2.52	-10.75
M _{NGFE}	36.67	0.43	0.43	4.27	21.32	21.91	0.43	2.84	13.28
N _{MBF}	-3.58	-0.36	0.39	2.25	-0.35	0.06	0.12	0.76	0.09
N _{MEF}	3.58	0.36	0.39	2.25	0.82	1.19	0.34	1.07	0.77

* Combinations 1, 2, 3, and 4 represent the data in regions 1, 2, 3, and 4 of Figure 1, respectively. Combination "1+3" represents the data in region 1+ data in region 3 in Figure 1.

Table 3. Quantitative operational evaluation of CMA on the $SO_4^{2^-}$ and NO_3^- in 1999 summer and 2002 winter over the US for different networks

Network	SEARCH	CASTNet		IMPROVE		STN
Year	1999	1999	2002	1999	2002	2002
SO4 ²						
Model Mean (\overline{M})	5.65	4.92	1.76	2.43	1.13	1.88
Observation Mean (\overline{O})	4.78	4.57	1.71	2.07	0.93	2.23
N	226	265	413	424	729	1149
r	0.74	0.89	0.84	0.89	0.86	0.67
MB	0.87	0.36	0.06	0.36	0.19	-0.34
MAGE	2.17	1.22	0.41	0.97	0.43	0.79
N _{MBF}	0.18	0.08	0.03	0.17	0.22	-0.19
N _{MEF}	0.45	0.27	0.24	0.47	0.46	0.42
NO ₃						
Mean Model (\overline{M})	0.215	0.32	2.19	0.16	0.90	3.38
Mean OBS (\overline{O})	0.421	0.50	1.38	0.27	0.68	3.35
N	226	265	4.15	424	689	1044
r	0.43	0.28	0.76	0.31	0.54	0.36
M _B	-0.21	-0.18	0.81	-0.11	0.22	0.03
M _{AGE}	0.33	0.37	1.11	0.27	0.67	2.43
N _{MBF}	-0.96	-0.56	0.59	-0.73	0.32	0.01
N _{MEF}	1.53	1.16	0.80	1.70	0.99	0.72

Figure 1. Comparison of modeled and observed aerosol NO₃⁻ concentration over the continental US (see text explanation).

Figure 3. Scatter plots of PM_{2.5} NO₃⁻ between the model and observation over the continental US for different networks in 1999 summer (upper) and 2002 winter (lower). The 1:1, 2:1, and 1:2 lines are shown for reference.